Download full-text PDF

Source

Publication Analysis

Top Keywords

[device mechanical
4
mechanical mixing
4
mixing gallodent-m
4
gallodent-m filling
4
filling material]
4
[device
1
mixing
1
gallodent-m
1
filling
1
material]
1

Similar Publications

Two-dimensional Transition Metal Dichalcogenides (2D TMDs) have garnered significant attention in the field of materials science due to their remarkable electronic and optoelectronic properties, including high carrier mobility and tunable band gaps. Despite the extensive research on various TMDs, there remains a notable gap in understanding the synthesis techniques and their implications for the practical application of monolayer tungsten disulfide (WS2) in optoelectronic devices. This gap is critical, as the successful integration of WS2 into commercial technologies hinges on the development of reliable synthesis methods that ensure high quality and uniformity of the material.

View Article and Find Full Text PDF

The Evolution of Uroflowmetry and Bladder Diary and the Emerging Trend of Using Home Devices From Hospital to Home.

Interact J Med Res

January 2025

Division of Urology, Department of Surgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan.

Although uroflowmetry and bladder diaries are widely used for noninvasive evaluation of lower urinary tract symptoms, they still have limitations in diagnostic capability and users' convenience. The aim of this paper is to discuss potential solutions by reviewing (1) the evolution and current clinical use of uroflowmetry and bladder diary, including clinical guidelines, daily practice applications, and their historical development; (2) a growing trend toward using home devices with various technologies; and (3) a comprehensive comparison of the strengths and weaknesses of these home devices. In our opinion, the following points can be highlighted: (1) the emerging trend of using home devices can enhance diagnostic capabilities through repeated measurements and the convenience of at-home testing and (2) home devices, which provide both frequency-volume and uroflowmetry information, have the potential to transform the management of lower urinary tract symptoms.

View Article and Find Full Text PDF

Objectives: This fourth report aimed to provide insights into patient characteristics, outcomes, and standardized outcome ratios of patients implanted with durable Mechanical Circulatory Support across participating centers in the European Registry for Patients with Mechanical Circulatory Support (EUROMACS) registry.

Methods: All registered patients receiving durable mechanical circulatory support up to August 2024 were included. Expected number of events were predicted using penalized logistic regression.

View Article and Find Full Text PDF

Objective: Aim: Study the mechanism of interaction between the 'sacroiliac joint - screw' system and determine the optimal parameters of the stabilizing structure, the strength of the system connection through computer modeling, and anatomical-biomechanical experiment.

Patients And Methods: Materials and Methods: The optimal parameters of the stabilizing structure for the sacroiliac joint were calculated using software package MathCAD. To validate the results of the numerical modeling, corresponding investigations of mechanical characteristics and determination of stiffness of the studied systems were conducted by an upgraded testing stand, TIRAtest-2151.

View Article and Find Full Text PDF

Developing damping materials that are both optically transparent and mechanically robust, while offering broad frequency damping capacity, is a significant challenge─particularly for devices that require protection without compromising visual clarity. Conventional methods often either fail to maintain transparency or involve complex designs that are difficult to implement. Here, we present an ionogel system that integrates a physically cross-linked elastic copolymer network with a viscous ionic liquid.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!