Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1749-6632.1981.tb50587.x | DOI Listing |
Phys Rev Lett
December 2024
Flatiron Institute, Center for Computational Quantum Physics, New York, New York 10010, USA.
The two-dimensional electron gas (2DEG) is a fundamental model, which is drawing increasing interest because of recent advances in experimental and theoretical studies of 2D materials. Current understanding of the ground state of the 2DEG relies on quantum Monte Carlo calculations, based on variational comparisons of different Ansätze for different phases. We use a single variational ansatz, a general backflow-type wave function using a message-passing neural quantum state architecture, for a unified description across the entire density range.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Columbia University, Department of Physics, New York, New York, USA.
A combined experimental and theoretical study is carried out on the three-body recombination process in a gas of microwave-shielded polar molecules. For ground-state polar molecules dressed with a strong microwave field, field-linked bound states can appear in the intermolecular potential. We model three-body recombination into such bound states using classical trajectory calculations.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China.
Hepatocellular carcinoma (HCC) is the most common cancer worldwide and vascular endothelial growth factor receptor-2 (VEGFR-2) is an important target in the development of inhibitors for the treatment of liver cancer. So far, however, there are no effective drugs targeting VEGFR-2 to achieve complete treatment of liver cancer. In this study, we employed molecular docking, molecular dynamics simulations, molecular mechanics generalized Born surface area (MM-GBSA) method, quantum mechanics/molecular mechanics (QM/MM) calculations and steered molecular dynamics simulations to discover the potential inhibitors from COCONUT database targeting VEGFR-2.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000 Rennes, France.
An accurate potential energy model, explicitly designed for studying scattering and treating the spin-orbit and nonadiabatic couplings on an equal footing, is proposed for the S + Ar system. The model is based on the Effective Relativistic Coupling by Asymptotic Representation (ERCAR) approach, building the geometry dependence of the spin-orbit interaction a diabatisation scheme. The resulting full diabatic model is used in close-coupling calculations to compute inelastic scattering cross sections for de-excitation from the S(D) fine structure level into the P multiplet.
View Article and Find Full Text PDFJ Org Chem
January 2025
Institute of Theoretical Chemistry and College of Chemistry, Jilin University, Changchun 130023, P.R. China.
Thiophene and pyrrole units are extensively utilized in light-responsive materials and have significantly advanced the field of organic photovoltaics (OPV). This progress has inspired our exploration of photosensitizers (PS) for photodynamic therapy (PDT). Currently, traditional PS face limitations in clinical application, including a restricted variety and narrow applicability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!