The efficacy of several fatty acids as antimicrobial, antiplaque, and anticaries agents, as well as their ability to inhibit hydroxyapatite dissolution were examined. All effectively inhibited bacterial growth. Lauric, linoleic, and oleic acids decreased plaque formation and lauric acid inhibited hydroxyapatite dissolution. When used in the food, lauric acid decreased caries in rats, but not significantly.
Download full-text PDF |
Source |
---|
J Hazard Mater
January 2025
Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 7008558, Japan. Electronic address:
Bone-eating (also known as osteophagia), found in wild animals, is primarily recognized as a means to supplement phosphorus and calcium intake. Herein, we describe a novel function of bone-eating in detoxifying heavy metal ions through the dissolution and co-precipitation of bone minerals as they travel through the gastrointestinal (GI) tract. In this study, cadmium (Cd), a heavy metal ion, served as a toxic model.
View Article and Find Full Text PDFSci Rep
December 2024
Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester and Northern Care Alliance NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK.
Calcinosis cutis affects 20-40% of patients with systemic sclerosis. This study tests the hypothesis that calcium-chelating polycarboxylic acids can induce calcium dissolution without skin toxicity or irritancy. We compared citric acid (CA) and ethylenediaminetetraacetic acid (EDTA) to sodium thiosulfate (STS) for their ability to chelate calcium in vitro using a pharmaceutical dissolution model of calcinosis (hydroxyapatite (HAp) tablet), prior to evaluation of toxicity and irritancy in 2D in vitro skin models.
View Article and Find Full Text PDFPolymers (Basel)
November 2024
Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand.
The porous particles prepared from composited calcium-ortho-phosphate (biphasic), Thai silk fibroin, gelatin, and alginate, with an organic to inorganic component ratio of 15.5:84.5, were tested for their abilities to control the release of the commercialized antibiotic solutions, clindamycin phosphate (CDP) and amikacin sulfate (AMK).
View Article and Find Full Text PDFPharmaceutics
November 2024
Department of Chemistry, University of Pavia, viale Taramelli 16, 27100 Pavia, Italy.
Background/objectives: Interest in drug delivery systems (DDS) based on inorganic substrates has increased in parallel with the increase in the number of poorly water-soluble drugs. Hydroxyapatite is one of the ideal matrices for DDS due to its biocompatibility, low cost, and ease of preparation.
Methods: We propose two doped hydroxyapatites, one with Ba on Ca sites another with Si on P sites, with the aim of improving the dissolution rate of piretanide, a diuretic, poorly water-soluble drug.
Sci Rep
November 2024
Department of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland.
Hydroxyapatite (HA) granules are frequently used in orthopedics and maxillofacial surgeries to fill bone defects and stimulate the regeneration process. Optimal HA granules should have high biocompatibility, high microporosity and/or mesoporosity, and high specific surface area (SSA), which are essential for their bioabsorbability, high bioactivity (ability to form apatite layer on their surfaces) and good osseointegration with the host tissue. Commercially available HA granules that are sintered at high temperatures (≥ 900 °C) are biocompatible but show low porosity and SSA (2-5 m/g), reduced bioactivity, poor solubility and thereby, low bioabsorbability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!