A series of potentiometric titrations of xanthine oxidase have been performed at room temperature in the pH range 6.1-9.9. Reduction of the two Fe/S centers was monitored by CD, and that of the FAD and Mo center by EPR. The Fe/S centers behave as centers having a protonable group whose pKa changes with reduction state (E = -344 mV, pKo = 6.4, and pKr = 8.1 for Fe/S I; E = -249 mV, pKo = 6.4, and pKr = 8.0 for Fe/S II). The flavin and the two types of molybdenum centers show varying behavior, but, in all cases, electron addition is accompanied by protonation. The sequence for FAD is reduction, protonation, reduction, protonation with E1 = -398 mV, E2 = -240 mV, pK1 = 9.5, pK2 = 7.4. For "rapid" molybdenum, the sequence is protonation, reduction, protonation, reduction with E1 = -369 mV, E2 = -301 mV, pK1 = 7.9, pK2 = 8.4; and for slow molybdenum, protonation, reduction, protonation with E1 = 320 mV, E2 = -477 mV, pK1 = 7.5, pK2 = 9.5. Comparison to data obtained previously at cryogenic temperatures (Cammack, R., Barber, M. J., and Bray, R. C. (1976) Biochem. J. 157, 469-468 and Barber, M. J., and Seigel, L. M. (1982) in Flavins and Flavoproteins (Massey, V., and Williams, C. H., eds) pp. 796-804, Elsevier/North-Holland, New York) showed the centers to have significant temperature dependence, which calls for a re-evaluation of conclusions reached using cryogenic techniques (e.g. rapid-freeze). The optical absorbance characteristics of the enzyme were also investigated and a possible absorbance for molybdenum was suggested.

Download full-text PDF

Source

Publication Analysis

Top Keywords

reduction protonation
16
protonation reduction
16
pk1 pk2
12
room temperature
8
xanthine oxidase
8
fe/s centers
8
pko pkr
8
pkr fe/s
8
reduction
7
protonation
7

Similar Publications

The electrochemical conversion of nitrate to ammonia is necessary to restore the globally perturbed nitrogen cycle. Herein, the regulated coordination of active Cu single atoms to selectively modulate the energy barriers of proton-electron transfer steps was investigated and offered valuable insights for improving the selectivity and kinetics of the NORR.

View Article and Find Full Text PDF

The Role of Surfactant in Electrocatalytic Carbon Dioxide Reduction in the Absence of Metal Cations.

ACS Electrochem

January 2025

Stephenson Institute for Renewable Energy (SIRE) and the Department of Chemistry, University of Liverpool, Liverpool L69 7ZF, United Kingdom.

Carbon dioxide electroreduction does not occur on Au when metal cations are absent from the electrode surfaces. Here we show that the electroreduction can be enabled without metal cations, albeit with low efficiency, by the presence of cationic surfactants on Au. The findings demonstrate that in addition to possibly stabilizing CO reduction intermediates the presence of surfactants plays a role in suppressing the competing reactions.

View Article and Find Full Text PDF

Samarium as a Catalytic Electron-Transfer Mediator in Electrocatalytic Nitrogen Reduction to Ammonia.

J Am Chem Soc

January 2025

Division of Chemistry and Chemical Engineering, California Institute of Technology (Caltech), Pasadena, California 91125, United States.

Samarium diiodide (SmI) exhibits high selectivity for NR catalyzed by molybdenum complexes; however, it has so far been employed only as a stoichiometric reagent (0.3 equiv of NH per Sm) combined with coordinating proton sources (e.g.

View Article and Find Full Text PDF

Understanding the oxygen reduction reaction (ORR) mechanism and accurately characterizing the reaction interface are essential for improving fuel cell efficiency. We developed an active learning framework combining machine learning force fields and enhanced sampling to explore the dynamics and kinetics of the ORR on Fe-N/C using a fully explicit solvent model. Different possible reaction paths have been explored and the O adsorption process is confirmed as the rate-determining step of the ORR at the Fe-N/C-water interface, which needs to overcome a free energy barrier of 0.

View Article and Find Full Text PDF

Synthesis of nonaromatic [16]thiatriphyrin(2.2.1)s.

Org Biomol Chem

January 2025

Department of Chemistry, IIT Bombay, Powai, Mumbai 400076, India.

[16]Thiatriphyrin(2.2.1)s containing one thiophene and two pyrroles connected five -carbons were synthesized by condensing a new precursor, -fused thiatripyrrane, with an appropriate aryl aldehyde in CHCl under acid-catalyzed inert conditions followed by open air oxidation with DDQ.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!