Sequences of human beta-globin mRNA were determined by analysis of complementary DNA. beta-mRNA was transcribed into double-stranded cDNA by RNA-dependent DNA polymerase. cDNA was cut by restriction endonucleases and the fragments were terminally labeled by means of polynucleotide kinase and [gamma-32P]ATP. After purification, fragments were degraded by snake venom phosphodiesterase. Alternatively single-stranded [32P]cDNA was prepared by transcription in the presence of [alpha-32P]dCTP and actinomycin D; the product was digested by endonuclease IV and degraded by snake venom phosphodiesterase. cDNA tracts obtained by both labeling methods enabled us to construct a sequence for the translated and 3'-terminal untranslated regions of human beta-mRNA.

Download full-text PDF

Source

Publication Analysis

Top Keywords

human beta-globin
8
complementary dna
8
degraded snake
8
snake venom
8
venom phosphodiesterase
8
beta-globin messenger
4
messenger rna
4
rna iii
4
iii nucleotide
4
nucleotide sequences
4

Similar Publications

Non-invasive prenatal testing (NIPT) has been widely adopted for the screening of chromosomal abnormalities; however, its adoption for monogenic disorders, such as β-thalassaemia, has proven challenging. Haemoglobinopathies are the most common monogenic disorders globally, with β-thalassaemia being particularly prevalent in Cyprus. This study introduces a non-invasive prenatal haplotyping (NIPH) assay for β-thalassaemia, utilizing cell-free DNA (cfDNA) from maternal plasma.

View Article and Find Full Text PDF

Unlabelled: Thalassemias and hemoglobinopathies are among the most common genetic diseases worldwide and have a significant impact on public health. The decreasing cost of next-generation sequencing (NGS) has quickly enabled the development of new assays that allow for the simultaneous analysis of small nucleotide variants (SNVs) and copy number variants (CNVs) as deletions/duplications of α- and β-globin genes.

Background/objectives: This study highlighted the efficacy and rapid identification of all types of mutations in the α- and β-globin genes, including silent variants, using the Devyser Thalassemia NGS kit.

View Article and Find Full Text PDF

We present a patient with type 2 diabetes mellitus and a variant hemoglobin whose HbA1c levels were falsely elevated regardless of the measurement method [high-performance liquid chromatography (HPLC), enzymatic, and immuno-assay] used. The causes of the falsely high HbA1c levels in this patient were investigated. The patient was a 73-year-old man with frequent hypoglycemia on self-monitoring of blood glucose, whose HbA1c level when measured by HPLC (standard mode) and immunoassay was substantially higher than that predicted by continuous blood glucose monitoring or from the patient's glycated albumin level.

View Article and Find Full Text PDF

Background: This study aimed to develop and validate a targeted next-generation sequencing (NGS) panel along with a data analysis algorithm capable of detecting single-nucleotide variants (SNVs) and copy number variations (CNVs) within the beta-globin gene cluster. The aim was to reduce the turnaround time in conventional genotyping methods and provide a rapid and comprehensive solution for prenatal diagnosis, carrier screening, and genotyping of β-thalassemia patients.

Methods And Results: We devised a targeted NGS panel spanning an 80.

View Article and Find Full Text PDF

Background: This study aimed to evaluate the efficacy of third-generation sequencing (TGS) and a thalassemia (Thal) gene diagnostic kit in identifying Thal gene mutations.

Methods: Blood samples (n = 119) with positive hematology screening results were tested using polymerase chain reaction (PCR)-based methods and TGS on the PacBio-Sequel-II-platform, respectively.

Results: Out of the 119 cases, 106 cases showed fully consistent results between the two methods, with TGS identified HBA1/2 and HBB gene mutations in 82 individuals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!