Cytoskeletal beta and gamma-actin are amongst the most rapidly made proteins of oocytes, blastulae and late embryonic stages of Xenopus laevis but, relative to other proteins, the rate of synthesis is low in the egg or cleaving embryo, although the messenger RNA is present in comparable amounts at the different stages. Actin synthesis therefore involves post-transcriptional regulation. alpha-Actin, the actin class characteristics of straited muscle cells, is first detectable in late gastrulae and it is an abundant newly synthetized protein from the neurula stage onwards. mRNA template activity for this protein is not detectable before the gastrula stage. Thus alpha-actin synthesis probably reflects new gene action, confined to part of the embryo, for alpha-actin only appears in the section which includes presumptive skeletal muscle cells. It therefore constitutes the earliest cyto-specific protein so far demonstrated in Amphibia. When tadpole tail poly(A)-containing mRNA is injected into oocytes and eggs alpha-actin synthesis is seen in both cases. Extensive evidence for the identification of the actins is presented. This is based on location of synthesis, DNase-I binding and partial peptide mapping.

Download full-text PDF

Source

Publication Analysis

Top Keywords

actin synthesis
8
xenopus laevis
8
muscle cells
8
alpha-actin synthesis
8
synthesis
5
synthesis early
4
early development
4
development xenopus
4
laevis cytoskeletal
4
cytoskeletal beta
4

Similar Publications

G3BP1 ribonucleoprotein complexes regulate focal adhesion protein mobility and cell migration.

Cell Rep

January 2025

Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT 06511, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA. Electronic address:

The subcellular localization of mRNAs plays a pivotal role in biological processes, including cell migration. For instance, β-actin mRNA and its associated RNA-binding protein (RBP), ZBP1/IGF2BP1, are recruited to focal adhesions (FAs) to support localized β-actin synthesis, crucial for cell migration. However, whether other mRNAs and RBPs also localize at FAs remains unclear.

View Article and Find Full Text PDF

Energy-based modelling of single actin filament polymerization using bond graphs.

J R Soc Interface

January 2025

Department of Biomedical Engineering, Faculty of Engineering & Information Technology, University of Melbourne, Melbourne, Victoria 3010, Australia.

Bond graphs provide an energy-based methodology for modelling complex systems hierarchically; at the moment, the method allows biological systems with both chemical and electrical subsystems to be modelled. Herein, the bond graph approach is extended to include chemomechanical transduction thus extending the range of biological systems to be modelled. Actin filament polymerization and force generation is used as an example of chemomechanical transduction, and it is shown that the (transformer) bond graph component provides a practical, and conceptually simple, alternative to the Brownian ratchet approach of Peskin, Odell, Oster and Mogilner.

View Article and Find Full Text PDF

Single-Cell Proteomics Uncovers Dual Traits of Dermal Sheath Cells in Wound Repair.

Adv Wound Care (New Rochelle)

January 2025

Translational Medicine Center, Baotou Central Hospital (Baotou Clinical Medical College, Affiliated to Inner Mongolia Medical University), Baotou, China.

Wound healing is a dynamic process involving multiple cell types and signaling pathways. Dermal sheath cells (DSCs), residing surrounding hair follicles, play a critical role in tissue repair, yet their regulatory mechanisms remain unclear. This study used single-cell proteomics with the mouse model to explore DSC function across different healing stages.

View Article and Find Full Text PDF

Cellular actin networks exhibit distinct assembly and disassembly dynamics, primarily driven by multicomponent reactions occurring at the two ends of actin filaments. While barbed ends are recognized as the hotspot for polymerization, depolymerization is predominantly associated with pointed ends. Consequently, mechanisms promoting barbed-end depolymerization have received relatively little attention.

View Article and Find Full Text PDF

TBC1D20 coordinates vesicle transport and actin remodeling to regulate ciliogenesis.

J Cell Biol

April 2025

Department of Genetics and Cell Biology, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.

TBC1D20 deficiency causes Warburg Micro Syndrome in humans, characterized by multiple eye abnormalities, severe intellectual disability, and abnormal sexual development, but the molecular mechanisms remain unknown. Here, we identify TBC1D20 as a novel Rab11 GTPase-activating protein that coordinates vesicle transport and actin remodeling to regulate ciliogenesis. Depletion of TBC1D20 promotes Rab11 vesicle accumulation and actin deconstruction around the centrosome, facilitating the initiation of ciliogenesis even in cycling cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!