Novel interface for PET/CBM computers.

Med Biol Eng Comput

Published: March 1983

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF02441538DOI Listing

Publication Analysis

Top Keywords

novel interface
4
interface pet/cbm
4
pet/cbm computers
4
novel
1
pet/cbm
1
computers
1

Similar Publications

Targeting Protein-Protein Interactions in Hematologic Malignancies.

Annu Rev Pathol

January 2025

Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA; email:

Over the last two decades, there have been extensive efforts to develop small-molecule inhibitors of protein-protein interactions (PPIs) as novel therapeutics for cancer, including hematologic malignancies. Despite the numerous challenges associated with developing PPI inhibitors, a significant number of them have advanced to clinical studies in hematologic patients in recent years. The US Food and Drug Administration approval of the very first PPI inhibitor, venetoclax, demonstrated the real clinical value of blocking protein-protein interfaces.

View Article and Find Full Text PDF

Mid-Infrared High-Power InGaAsSb/AlGaInAsSb Multiple-Quantum-Well Laser Diodes Around 2.9 μm.

Nanomaterials (Basel)

January 2025

Key Laboratory of Optoelectronic Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China.

Antimonide laser diodes, with their high performance above room temperature, exhibit significant potential for widespread applications in the mid-infrared spectral region. However, the laser's performance significantly degrades as the emission wavelength increases, primarily due to severe quantum-well hole leakage and significant non-radiative recombination. In this paper, we put up an active region with a high valence band offset and excellent crystalline quality with high luminescence to improve the laser's performance.

View Article and Find Full Text PDF

Foamy Melamine Resin-Silica Aerogel Composite-Derived Thermal Insulation Coating.

Nanomaterials (Basel)

January 2025

State Key Laboratory of High-Performance Civil Engineering Materials, Jiangsu Sobute New Materials Co., Ltd., Nanjing 210008, China.

A novel class of SiO aerogel-based resin composite with a self-formed foamy structure and an extremely low thermal conductivity, as well as excellent fire resistance, was fabricated via a room temperature and atmospheric pressure route. The self-formed foamy structure was achieved by utilizing SiO aerogel particles not only as a thermal insulative functional additive filler but also as nano-sized solid particles in a Picking emulsion system, adjusting the surface tension as a stabilizer at the interface between the two immiscible phases (liquid and air in this case). The results of foamy structure analyses via scanning electron microscopy, micro-CT, and N adsorption-desorption isotherms validate the successful generation of a micro-scale porous structure with the enhancement of the aerogel nano-scale solid particles at the wall as a stabilizer.

View Article and Find Full Text PDF

With the goal of fast and accurate diagnosis of infectious diseases, this study presents a novel electrochemical biosensor that employs a refined aptamer (C9t) for the detection of spike (S) protein SARS-CoV-2 variants in a flexible multielectrode aptasensor array with PoC capabilities. Two aptamer modifications were employed: removing the primer binding sites and including two dithiol phosphoramidite anchor molecules. Thus, reducing fabrication time from 24 to 3 h and increasing the stability and sparseness for multi-thiol aptasensors compared to a standard aptasensor using single thiols, without a reduction in aptamer density.

View Article and Find Full Text PDF

Electrochemical Glucose Sensor Based on Dual Redox Mediators.

Biosensors (Basel)

December 2024

Cofoe Medical Technology Co., Ltd., No. 816 Zhenghua Road, Changsha 410021, China.

Electrochemical glucose sensor holds significant promise for the monitoring of blood glucose levels in diabetic patients. In this study, we proposed a novel electrochemical glucose sensor based on 1,10-Phenanthroline-5,6-dione (PD)/Ru(III) as a dual redox mediator. The synergistic effect of PD and Ru(III) was utilized to efficiently facilitate the electron transfer between the enzyme-active center and the electrode.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!