The time course of blood-nerve barrier recovery in mouse nerves was studied after proximal and distal segmental sciatic sections. Transfer constants for uptake of isotopically labeled sucrose and urea were determined. Sectioned segments were examined ultrastructurally. Marked alterations in isotope uptake for 2 months with gradual restoration of blood-nerve barrier by 6 months was found. Ultrastructure of sectioned segments showed increased numbers of perineurial compartments. Human nerve xenografts to immunosuppressed animals remain hypomyelinated for 6 months which may be related to damage to the blood-nerve barrier.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0006-8993(83)90596-6DOI Listing

Publication Analysis

Top Keywords

blood-nerve barrier
12
time course
8
sectioned segments
8
course blood
4
blood nerve
4
barrier
4
nerve barrier
4
barrier reconstitution
4
reconstitution sectioning
4
sectioning implications
4

Similar Publications

Spinal cord injury (SCI) is a severely debilitating neurological condition that often results in significant functional impairment and is associated with poor long-term prognosis. Edema, oxidative stress, inflammatory responses, and cell death are the primary factors contributing to secondary injury following spinal cord damage. Ubiquitination is a crucial intracellular mechanism for protein regulation that has garnered significant attention as a therapeutic target in a variety of diseases.

View Article and Find Full Text PDF

CNS lymphoma is a rare form of non-Hodgkin lymphoma that primarily affects the brain, spinal cord, leptomeninges, or eyes, leading to severe neurological or ophthalmological complications. This case report details a 44-year-old male with human immunodeficiency virus and diffuse large B-cell lymphoma who experienced permanent vision loss due to optic perineuritis, a rare presenting symptom indicative of underlying CNS involvement. Despite previous remission, imaging revealed focal enhancements suggesting CNS lymphoma, highlighting diagnostic and management challenges in relapsed lymphoma, especially in immunocompromised patients.

View Article and Find Full Text PDF

The thrombolytic protease tissue plasminogen activator (tPA) is expressed in the CNS, where it regulates diverse functions including neuronal plasticity, neuroinflammation, and blood-brain-barrier integrity. However, its role in different brain regions such as the substantia nigra (SN) is largely unexplored. In this study, we characterize tPA expression, activity, and localization in the SN using a combination of retrograde tracing and β-galactosidase tPA reporter mice.

View Article and Find Full Text PDF

Introduction: Brain damage caused by subarachnoid hemorrhage (SAH) currently lacks effective treatment, leading to stagnation in the improvement of functional outcomes for decades. Recent studies have demonstrated the therapeutic potential of exosomes released from mesenchymal stem cells (MSC), which effectively attenuate neuronal apoptosis and inflammation in neurological diseases. Due to the challenge of systemic dilution associated with intravenous administration, intranasal delivery has emerged as a novel approach for targeting the brain.

View Article and Find Full Text PDF

: We assessed the influence of long-term injection of magnoflorine (MAG) on memory acquisition in mice for the first time. : This isoquinoline alkaloid that belongs to the aporphines was isolated from the roots of by centrifugal partition chromatography (CPC) using a biphasic solvent system composed of chloroform: methanol: water in the ratio 4:3:3 (//) with 20 mM of hydrochloric acid and triethylamine, within 64 min. : Our results indicated that long-term injection of MAG 20 mg/kg dose improve the long-term memory acquisition in mice that were evaluated in the passive avoidance (PA) test with no toxicity records.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!