Electron microscopic study of cardiomyocytes of Wistar rats using an experimental model of myocardial insufficiency induced by injection of rubomycin was carried out. A number of submicroscopic changes occurring in cardiomyocytes when protein synthesis was disturbed (autophagy and sequestration of glycogen, focal cytoplasmic degradation, increased number of secondary lysosomes) were shown to be the structural manifestations of inhibition of RNA synthesis in the nucleus. Alongside with involutional processes, the pathological changes of basic organelles consisting of thinning of myofibrils and decrease of mitochondrial membrane stability were revealed. At the stage of renewal of synthetic processes the dysbalance between intracellular regeneration and abnormalities of new formation of myofibrils was noted. All the observed ultrastructural changes form a morphological basis of development of contractile myocardial plastic insufficiency.
Download full-text PDF |
Source |
---|
Funct Integr Genomics
January 2025
Department of Cardiology, Guizhou Provincial People`s Hospital, 83 Zhongshan East Road, Guiyang City, 550002, Guizhou Province, China.
Metabolic reprogramming, the shifting from fatty acid oxidation to glucose utilization, improves cardiac function as heart failure (HF) progresses. Leptin plays an essential role in regulating glucose metabolism. However, the crosstalk between leptin and metabolic reprogramming is poorly understood.
View Article and Find Full Text PDFRedox Biol
January 2025
Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China. Electronic address:
Available evidence indicates that neuregulin-1 (NRG-1) can provide a protection against myocardial ischemia/reperfusion (I/R) injury and is involved in various cardioprotective interventions by potential regulation of mitophagy. However, the molecular mechanisms linking NRG-1 and mitophagy remain to be clarified. In this study, both an in vivo myocardial I/R injury model of rats and an in vitro hypoxia/reoxygenation (H/R) model of H9C2 cardiomyocytes were applied to determine whether NRG-1 postconditioning attenuated myocardial I/R injury through the regulation of mitophagy and to explore the underlying mechanisms.
View Article and Find Full Text PDFShock
January 2025
Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University; 151 Rd, Yan Jiang West, Guangzhou, 510120, China.
The global prevalence of heart failure is still growing, which imposes a heavy economic burden. The role of microRNA-146b (miR-146b) in HF remain largely unknown. This study aims to explore the role and mechanism of miR-146b in HF.
View Article and Find Full Text PDFPLoS One
January 2025
Hebei General Hospital, Shijiazhuang City, Hebei Province, P.R. China.
Objective: To study the effect of Dapagliflozin on ferroptosis in rabbits with chronic heart failure and to reveal its possible mechanism.
Methods: Nine healthy adult male New Zealand white rabbits were randomly divided into Sham group (only thorax opening was performed in Sham group, no ascending aorta circumferential ligation was performed), Heart failure group (HF group, ascending aorta circumferential ligation was performed in HF group to establish the animal model of heart failure), and Dapagliflozin group (DAPA group, after the rabbit chronic heart failure model was successfully made in DAPA group). Dapagliflozin was given by force-feeding method.
Int J Cardiol Cardiovasc Risk Prev
March 2025
Beijing Chaoyang Hospital, Capital Medical University, Department of Endocrinology, Beijing, China.
Object: To explore the mechanism of diabetic cardiomyopathy that hyperglycemia may affect the cardiac function by inhibiting the expression of ATPase β subunit.
Method: Cardiac function, fibrosis levels, and the expression of the ATPase β subunit were observed in Akita mice-a diabetes mice model without lipid metabolism disorders--using morphological, molecular biology, and echocardiographic analyses compared to wild-type mice. The study revealed a connection between the decreased ATPase β subunit and the development of diabetic myocardial injury.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!