Human bone morphogenetic protein (hBMP) was chemically extracted from demineralized gelatinized cortical bone matrix by means of a CaCl2 X urea inorganic-organic solvent mixture, differential precipitation in guanidine hydrochloride, and preparative gel electrophoresis. hBMP is isolated in quantities of 1 mg/kg of wet weight of fresh bone, and has the amino-acid composition of an acidic polypeptide. The mol wt is 17 to 18 k-Da (kilodaltons). Implants of the isolated 17-kDa protein are very rapidly adsorbed and produce a smaller volume of bone than protein fractions consisting of 24-, 17-, and 14-kDa proteins. Since the isolated 24- and 14-kDA components lack hBMP activity, the kinetics of the bone morphogenetic processes including the function of other proteins as carrier molecules, await investigation.

Download full-text PDF

Source
http://dx.doi.org/10.3181/00379727-173-41630DOI Listing

Publication Analysis

Top Keywords

bone morphogenetic
12
human bone
8
morphogenetic protein
8
protein hbmp
8
bone
5
protein
4
hbmp
4
hbmp human
4
hbmp chemically
4
chemically extracted
4

Similar Publications

Activation of bone morphogenetic protein (BMP) 4 signaling promotes the survival of retinal ganglion cell (RGC) after acute injury. In this study, we investigated the role of the BMP4 signaling pathway in regulating the degeneration of retinal ganglion cells (RGCs) in a mouse glaucoma model and its potential application in retinal stem cell. Our results demonstrate that BMP4-GPX4 not only reduces oxidative stress and iron accumulation but also promotes neuroprotective factors that support the survival of transplanted RSCs into the host retina.

View Article and Find Full Text PDF

Background: The efficacy of bone marrow aspirate concentrate (BMAC) in promoting bone-tendon interface (BTI) healing without any carriers remains a subject of debate.

Purpose: To evaluate BMAC effects with different carriers on tendon regeneration in a rabbit model of chronic rotator cuff tear.

Study Design: Controlled laboratory study.

View Article and Find Full Text PDF

Beta-adrenergic receptor antagonist propranolol prevents bisphosphonate-related osteonecrosis of the jaw by promoting osteogenesis.

J Dent Sci

January 2025

State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.

Background/purpose: Bisphosphonate-related osteonecrosis of the jaw (BRONJ), a complication arising from the use of bisphosphonates (BPs), inflicts long-term suffering on patients. Currently, there is still a lack of effective treatments. This study aimed to explore the preventive effects of propranolol (PRO) on BRONJ in vitro and in vivo, given PRO's potential in bone health enhancement.

View Article and Find Full Text PDF

Background/purpose: Revascularization procedures are used over apexification to treat teeth with necrotic pulp tissues and incomplete root formation. Clinically, inducing proliferation, migration, matrix deposition, and differentiation of stem cells from apical papilla (SCAPs) are critical for pulp regeneration. The study aimed to elucidate the impact of bone morphogenetic protein-4 (BMP-4) on plasminogen activation molecules and the osteogenic/odontogenic differentiation of SCAPs, as well as understand the related signaling mechanisms.

View Article and Find Full Text PDF

Background/purpose: -2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside (THSG) is a bioactive component in the Chinese herb Polygonum multiflorum, recognized for its anti-inflammatory and lipid-lowering properties. Human dental pulp stem cells (hDPSCs) have excellent capabilities in tooth regeneration, wound healing, and neural repair. The exosomes (Exo) released by hDPSCs contain bioactive molecules that influence cell proliferation, differentiation, and immune responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!