We studied the normal spread of excitation on the anterior and posterior ventricular surface of open-chest dogs by recording unipolar electrograms from an array of 1124 electrodes spaced 2 mm apart. The array had the shape of the ventricular surface of the heart. The electrograms were processed by a computer and displayed as epicardial equipotential maps at 1-msec intervals. Isochrone maps also were drawn. Several new features of epicardial potential fields were identified: (1) a high number of breakthrough points; (2) the topography, apparent widths, velocities of the wavefronts and the related potential drop; (3) the topography of positive potential peaks in relation to the wavefronts. Fifteen to 24 breakthrough points were located on the anterior, and 10 to 13 on the posterior ventricular surface. Some were in previously described locations and many others in new locations. Specifically, 3 to 5 breakthrough points appeared close to the atrioventricular groove on the anterior right ventricle and 2 to 4 on the posterior heart aspect; these basal breakthrough points appeared when a large portion of ventricular surface was still unexcited. Due to the presence of numerous breakthrough points on the anterior and posterior aspect of the heart which had not previously been described, the spread of excitation on the ventricular surface was "mosaic-like," with activation wavefronts spreading in all directions, rather than radially from the two breakthrough points, as traditionally described. The positive potential peaks which lay ahead of the expanding wavefronts moved along preferential directions which were probably related to the myocardial fiber direction.

Download full-text PDF

Source
http://dx.doi.org/10.1161/01.res.52.6.706DOI Listing

Publication Analysis

Top Keywords

ventricular surface
24
breakthrough points
24
anterior posterior
12
potential fields
8
spread excitation
8
posterior ventricular
8
positive potential
8
potential peaks
8
points appeared
8
ventricular
6

Similar Publications

Extracellular volume (ECV) by cardiovascular magnetic resonance (CMR) imaging is associated with disease burden and clinical outcomes. Recent studies in patients with valvular heart disease (VHD) have suggested that the indexed total ECV (iECV) = ECVx(LV/1.05)/body surface area may supersede ECV in terms of prognostication.

View Article and Find Full Text PDF

Infective endocarditis (IE) is an infectious disease caused by the hematogenous dissemination of bacteria into heart valves. Improving the identification of pathogens that cause IE is important to increase the effectiveness of its therapy and reduce the mortality caused by this pathology. Ten native heart valves obtained from IE patients undergoing heart valve replacements were analyzed.

View Article and Find Full Text PDF

Cardiovascular diseases (CVDs) were responsible for approximately 19 million deaths in 2020, marking an increase of 18.7% since 2010. Biological decellularized patches are common therapeutic solutions for CVD such as cardiac and valve defects.

View Article and Find Full Text PDF

Effects of In Vivo Contact Force on Pulsed-Field Ablation Efficacy in Porcine Ventricles.

J Cardiovasc Electrophysiol

January 2025

Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA.

Background: Pulsed-field ablation (PFA) is an innovative non-thermal method for arrhythmia treatment. The efficacy of various PFA configurations in relation to contact force (CF) has not been well-studied in vivo.

Objectives: This study evaluated the effect of CF on acute bipolar PFA lesions in both a vegetal and an in vivo porcine heart model.

View Article and Find Full Text PDF

Background: The major of anticancer therapies induce a wide spectrum of cardiotoxic effects. Early identification of anticancer treatment-associated cardiotoxicity is critical to informing decisions on subsequent interventions. Myocardial extracellular volume (ECV) has been proposed as a useful parameter for quantifying the early cardiotoxicity of cancer-related treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!