A temperature sensitive mutant exhibiting a very high level of chromosomal aberrations has been isolated from the Chinese hamster cell line E36. The chromosome aberrations, which include chromosome and chromatid breaks, multiradial configurations, dicentrics, and pulverizations, start to appear 1 h after a shift in temperature from 34 degrees C to 40.5 degrees C. The rate of sister chromatid exchange is not increased in this mutant. Analysis of somatic cell hybrids indicates that the mutation in this temperature sensitive mutant is dominant.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000131850DOI Listing

Publication Analysis

Top Keywords

temperature sensitive
12
sensitive mutant
12
chinese hamster
8
hamster cell
8
exhibiting high
8
temperature
4
mutant
4
mutant chinese
4
cell exhibiting
4
high chromosomal
4

Similar Publications

Stable Luminescent Diradicals: The Emergence and Potential Applications.

Angew Chem Int Ed Engl

January 2025

Jilin University, College of Electronic Science and Engineering, State Key Laboratory of Integrated Optoelectronics, Qianjin Avenue 2699, Changchun, 130012, Changchun, CHINA.

Stable luminescent diradicals, characterized by the presence of two unpaired electrons, exhibit unique photophysical properties that are sensitive to external stimuli such as temperature, magnetic fields, and microwaves. This sensitivity allows the manipulation of their spin states and luminescence, setting them apart from traditional closed-shell luminescent molecules and luminescent monoradicals. As a result, luminescent diradicals are emerging as promising candidates for a variety of applications.

View Article and Find Full Text PDF

Sub-millikelvin-resolved superconducting nanowire single-photon detector operates with sub-pW infrared radiation power.

Natl Sci Rev

January 2025

Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China.

The noise equivalent temperature difference (NETD) indicates the minimum temperature difference resolvable by using an infrared detector. The lower the NETD, the better the sensor can register small temperature differences. In this work, we proposed a strategy to achieve a high temperature resolution using a superconducting nanowire single-photon detector (SNSPD) with ultra-high sensitivity.

View Article and Find Full Text PDF

Introduction: Autoimmune hemolytic anemia (AIHA) is a condition in which there is decreased survival of red blood cells (RBC) due to the destruction of RBC by autoantibodies. AIHA is classified into warm, cold, and mixed according to temperature sensitivity. The antibodies may be immunoglobulin G, immunoglobulin M, immunoglobulin A, or complement proteins, and hemolysis may be intravascular or extravascular.

View Article and Find Full Text PDF

Further Characterization of Lipase B from Ustilago maydis Expressed in Pichia pastoris: a Member of the Candida antarctica Lipase B-like Superfamily.

Appl Biochem Biotechnol

January 2025

Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C, 45019, Zapopan, Jal, Mexico.

Lipases from the basidiomycete fungus Ustilago maydis are promising but underexplored biocatalysts due to their high homology with Candida antarctica lipases. This study provides a comprehensive characterization of a recombinant CALB-like lipase from U. maydis, expressed in Pichia pastoris (rUMLB), and compares its properties with those of the well-studied recombinant lipase B from C.

View Article and Find Full Text PDF

Context: 3,4-Bis(3-nitrofurazan-4-yl) furoxan (DNTF) is a typical low-melting-point, high-energy-density compound that can serve as a cast carrier explosive. Therefore, understanding the safety of DNTF under different casting processes is of great significance for its efficient application. This study employed molecular dynamics simulations to investigate the effects of temperature and pressure on the self-diffusion characteristics and mechanical sensitivity of DNTF.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!