Greatly enhanced manganese-dependent phosphatidylinositol:myo-inositol exchange activity was observed when isolated, intact nerve-endings were incubated with the nucleotide, CMP, suggesting that the enzyme, CDP-diglyceride:inositol phosphatidyl transferase, catalyzes this exchange. CMP, at 10 microM, produced as much myo-[2-3H] inositol incorporation into phosphatidylinositol as did 1 mM. This CMP-stimulated exchange activity may reside on the plasma membrane.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0006-291x(83)91690-xDOI Listing

Publication Analysis

Top Keywords

exchange activity
12
phosphatidylinositolmyo-inositol exchange
8
cmp-dependent phosphatidylinositolmyo-inositol
4
exchange
4
activity isolated
4
isolated nerve-endings
4
nerve-endings greatly
4
greatly enhanced
4
enhanced manganese-dependent
4
manganese-dependent phosphatidylinositolmyo-inositol
4

Similar Publications

Aim: Autistic traits exhibit neurodiversity with varying behaviors across developmental stages. Brain complexity theory, illustrating the dynamics of neural activity, may elucidate the evolution of autistic traits over time. Our study explored the patterns of brain complexity in autistic individuals from childhood to adulthood.

View Article and Find Full Text PDF

Recent Advances and Future Directions in Extracorporeal Carbon Dioxide Removal.

J Clin Med

December 2024

Department of Adult Critical Care, Guy's and St Thomas' NHS Foundation Trust, King's Health Partners, London SE1 9RT, UK.

Extracorporeal carbon dioxide removal (ECCOR) is an emerging technique designed to reduce carbon dioxide (CO) levels in venous blood while enabling lung-protective ventilation or alleviating the work of breathing. Unlike high-flow extracorporeal membrane oxygenation (ECMO), ECCOR operates at lower blood flows (0.4-1.

View Article and Find Full Text PDF

Human miR-1 Stimulates Metabolic and Thermogenic-Related Genes in Adipocytes.

Int J Mol Sci

December 2024

Department of Pharmacology, Physiology and Legal and Forensic Medicine, Faculty of Health and Sport Science, University of Zaragoza, 50009 Zaragoza, Spain.

MicroRNAs play a pivotal role in the regulation of adipose tissue function and have emerged as promising therapeutic candidates for the management of obesity and associated comorbidities. Among them, miR-1 could be a potential biomarker for metabolic diseases and contribute to metabolic homeostasis. However, thorough research is required to fully elucidate the impact of miR-1 on human adipocyte thermogenesis and metabolism.

View Article and Find Full Text PDF

Cancer cells undergo remarkable metabolic changes to meet their high energetic and biosynthetic demands. The Warburg effect is the most well-characterized metabolic alteration, driving cancer cells to catabolize glucose through aerobic glycolysis to promote proliferation. Another prominent metabolic hallmark of cancer cells is their increased reliance on glutamine to replenish tricarboxylic acid (TCA) cycle intermediates essential for ATP production, aspartate and fatty acid synthesis, and maintaining redox homeostasis.

View Article and Find Full Text PDF

W/WO/TiO Multilayer Film with Elevated Electrochromic and Capacitive Properties.

Materials (Basel)

January 2025

College of Physics and Electronic Information, Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou 253023, China.

Electrochromic capacitors, which are capable of altering their appearances in line with their charged states, are drawing substantial attention from both academia and industry. Tungsten oxide is usually used as an electrochromic layer material for electrochromic devices, or as an active material for high-performance capacitor electrodes. Despite this, acceptable visual aesthetics in electrochromic capacitors have almost never been achieved using tungsten oxide, because, in its pure form, this compound only displays a onefold color modulation from transparent to blue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!