Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The fast component of the ventilatory changes that occur at the transition phases of exercise was studied in awake dogs trained to run on a treadmill. Two questions were examined: firstly, is the fast ventilatory component modified by changes in venous return to the lungs, such as those consecutive either to increased work loads or to beta adrenergic blockade?, and secondly, is this component altered by central ventilatory depressants? The results showed that at the onset of exercise, there is no correlation between the instantaneous increment in ventilation and the intensity of exercise, but at the end of the treadmill run, the fall in ventilation is closely linked to the power of the work performed. Ventilatory transients observed either at the start or at the end of exercise remain unaffected by administration of a beta-adrenergic blocking agent. But central depressant effects on ventilation caused by narcotic analgesics or hypnotic drugs altered the breathing pattern of the fast component of exercise-induced ventilatory changes. It is concluded that the instantaneous changes in ventilation occurring at the transition phases of exercise are controlled by mechanoreceptor mechanisms, but cerebral control is superimposed on the reflex control in regulating both tidal volume and breathing rate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF01063930 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!