Lisuride, an ergot D2 dopamine receptor agonist inhibited dopamine synthesis in striatal synaptosomes concentration-dependently. Significant inhibition was detected at 10(-8) M, and the inhibition by 10(-4) M lisuride was 50%. The inhibitory effect of lisuride was reversed by more than 50% not only by the D1-D2 dopamine receptor blocker haloperidol but also by the D2 dopamine receptor blocker(-)-sulpiride. The effect of sulpiride was stereospecific. Under the same test conditions a similar inhibition of dopamine synthesis by apomorphine was reversed by the neuroleptics almost completely. The results suggest that there are dopamine autoreceptors controlling dopamine synthesis in synaptosomes and these receptors resemble D2 dopamine receptors according to the nomenclature of Kebabian and Calne (1979).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF00649358 | DOI Listing |
Molecules
January 2025
Department of Chemistry and Biochemistry, University of Colorado, Colorado Springs, CO 80918, USA.
Catalytically active nanomaterials, or nanozymes, have gained significant attention as alternatives to natural enzymes due to their low cost, ease of preparation, and enhanced stability. Because of easy preparation, excellent biocompatibility, and unique optoelectronic properties, gold nanoparticles (AuNPs) have attracted increasing attention in many fields, including nanozymes. In this work, we demonstrated the applicability of beta-cyclodextrin functionalized gold nanoparticles (β-CD-AuNPs) as enzyme mimics for different substances, including TMB and DA.
View Article and Find Full Text PDFMolecules
January 2025
Department of Chemistry, Middle Tennessee State University, 440 Friendship Street, Murfreesboro, TN 37132, USA.
Elevated dopamine (DA) levels in urine denote neuroblastoma, a pediatric cancer. Saccharide-derived carbon dots (CDs) were applied to assay DA detection in simulated urine (SU) while delineating the effects of graphene defect density on electrocatalytic activity. CDs were hydrothermally synthesized to vary graphene defect densities using sucrose, raffinose, and palatinose, depositing them onto glassy carbon electrodes (GCEs).
View Article and Find Full Text PDFMolecules
January 2025
Department of Analytical Chemistry and Physical Chemistry, Faculty of Chemistry, University of Bucharest, Panduri Avenue 90-92, District 5, 050663 Bucharest, Romania.
This paper summarizes the main findings of a study which aimed to examine the electrochemical oxidation of homovanillic acid (HVA), the final metabolite of dopamine. A pencil graphite electrode (PGE) was used as working electrode and the measurements were performed by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The type and the composition of the graphite leads used as PGE, the pH of the supporting electrolyte, as well as the scan rates were optimized by CV.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Institute of Chemistry, St. Petersburg State University, 199034 St. Petersburg, Russia.
Deep eutectic solvents (DES) have emerged as versatile, sustainable media for the synthesis of nanomaterials due to their low toxicity, tunability, and biocompatibility. This study develops a one-step method to modify commercially available screen-printed electrodes (SPE) using laser-induced pyrolysis of DES, consisting of choline chloride and tartaric acid with dissolved nickel acetate and dispersed graphene. The electrodes were patterned using a 532 nm continuous-wave laser for the in situ formation of Ni nanoparticles decorated on graphene sheets directly on the SPE surface (Ni-G/SPE).
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Endocrinology Unit, Department of Internal Medicine and Medical Specialties, School of Medical and Pharmaceutical Sciences, University of Genova, 16132 Genova, Italy.
Acromegaly is a rare endocrine disorder caused by excessive growth hormone (GH) production, due, in the vast majority of cases, to the presence of a GH-secreting pituitary tumour. The chronic elevation of GH and the resulting high circulating levels of insulin-like growth factor-1 (IGF-1) cause the characteristic tissue overgrowth and a number of associated comorbidities, including several metabolic changes, such as glucose intolerance and overt diabetes mellitus (DM). Elevated GH concentrations directly attenuate insulin signalling and stimulate lipolysis, decreasing glucose uptake in peripheral tissues, thus leading to the development of impaired glucose tolerance and DM.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!