A technique for the detection of biotransformation products of xenobiotics in crude urine extracts by field desorption mass spectrometric profile analysis is described. The method comprises determination of peak profiles of a series of blank and test samples using low resolution field desorption mass spectrometry, comparison of averaged peak profiles and noise reduction by means of Fisher and ratio weighting of peak intensities. Application of the technique to 3,5-dinitro-2-hydroxytoluene has resulted in the detection of two hitherto unknown metabolites in rat urine. By thin-layer co-chromatography, high resolution electron impact mass spectrometry and thin-layer chromatographic/field desorption mass spectrometric analysis they could be identified as 3,5-dinitro-2-hydroxybenzenemethanol and 3,5-diacetamido-2-hydroxytoluene.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bms.1200100102DOI Listing

Publication Analysis

Top Keywords

desorption mass
16
field desorption
12
mass spectrometry
12
profile analysis
8
mass spectrometric
8
peak profiles
8
mass
5
urine profile
4
analysis field
4
desorption
4

Similar Publications

The increasing global demand for plastic has raised the need for effective waste plastic management due to its long lifetime and resistance to environmental degradation. There is a need for rapid plastic identification to improve the mechanical waste plastic sorting process. This study presents a novel application of Temperature-Programmed Desorption-Direct Analysis in Real Time-High Resolution Mass Spectrometry (TPD-DART-HRMS) that enables rapid characterization of various plastics.

View Article and Find Full Text PDF

Covalent Organic Framework Nanofilm-Assisted Laser Desorption Ionization Mass Spectrometry for Rapid Screening of Parabens in Personal Care Products.

Rapid Commun Mass Spectrom

April 2025

State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China.

Rational: People are widely exposed to parabens in their daily life, but parabens are endocrine disrupting chemicals that pose a threat to human health. Therefore, establishing a rapid screening method to enhance monitoring of parabens is necessary. Herein, a covalent organic framework (COF) nanofilm-assisted laser desorption ionization mass spectrometry (LDI-MS) method was established to screen parabens in personal care products (PCPs).

View Article and Find Full Text PDF

Spatial metabolomics and feature-based molecular networking to unveiling in-situ quality markers landscape and reflecting geographic origins of pomegranate seeds.

Food Chem

January 2025

Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China. Electronic address:

Pomegranate seeds, a by-product of pomegranate processing, are gaining attention in food industries due to their high antioxidant activity. However, the lack of quality markers reflecting activity and spatial characteristics limits their utilization and product stability. In this research, a selective and sensitive method integrating ultra performance liquid chromatography-quadrupole time-of-flight mass spectrometry with feature-based molecular networking, and desorption electrospray ionization-mass spectrometry imaging developed to identify components and locate in-situ images of quality markers via spatial metabolomics analysis.

View Article and Find Full Text PDF

Background: Impaired oxidation of branched chain amino acids may give rise to volatile organic compounds (VOCs). We hypothesized that VOCs will be present in exhaled breath of participants with propionic acidemia (PA), and their relative abundance would correlate with clinical and biochemical characteristics of the disease.

Methods: We enrolled 5 affected participants from a natural history study of PA (ClinicalTrials.

View Article and Find Full Text PDF

Synthesis and Characterization of Poly(ethylene furanoate)/Poly(ε-caprolactone) Block Copolymers.

J Am Soc Mass Spectrom

January 2025

Laboratory of Chemistry and Technology of Polymers and Colors, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.

Biobased poly(ethylene furanoate) (PEF)/poly(ε-caprolactone) (PCL) block copolymers have been synthesized using ring opening polymerization (ROP) of ε-caprolactone (ε-CL) in the presence of PEF in different mass ratios. An increase in intrinsic viscosity is observed for the block copolymers with higher ε-CL content due to the extension of their macromolecular chain. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MS) was employed to understand the composition and structure of the produced block copolymers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!