Download full-text PDF

Source

Publication Analysis

Top Keywords

[expediency formation
4
formation "anorectal
4
"anorectal angle"
4
angle" downward
4
downward displacement
4
displacement intestine]
4
[expediency
1
"anorectal
1
angle"
1
downward
1

Similar Publications

Article Synopsis
  • The development of drug-target binding affinity (DTA) prediction is evolving from traditional lab methods to machine learning, enhancing drug discovery by saving time and resources.
  • A new method called MTAF-DTA improves DTA prediction by using an attention mechanism to assess the importance of different drug features and simulating drug-target interactions through a Spiral-Attention Block.
  • MTAF-DTA outperforms existing methods, demonstrating improved predictive accuracy in experiments, suggesting its potential for practical applications in drug discovery and treatment.
View Article and Find Full Text PDF

The cascade carbon-carbon and carbon-nitrogen bond formation between generated carbonyl ylides and azaoxyallyl cations, facilitated by Rh-catalysis and a base, has been achieved to furnish oxa-benzo[]azepin-3-ones. Substrate scope, functional group diversity, scale-up and post-synthetic utilities are the important practical features.

View Article and Find Full Text PDF

Sustainable chemical production demands the creation of innovative catalysts and catalytic technologies. While the development of coherent and robust catalytic systems using earth-abundant transition metals is essential, it remains a significant challenge. Herein, an expedient divergence strategy for tandem dehydrogenative C(sp)-H alkylation and cyclization reactions of 9-fluorene using a newly developed ,-bidentate cobalt catalytic system is developed.

View Article and Find Full Text PDF

Promotion of RNF168-Mediated Nucleosomal H2A Ubiquitylation by Structurally Defined K63-Polyubiquitylated Linker Histone H1.

Angew Chem Int Ed Engl

January 2025

New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China.

The chemical synthesis of histones with homogeneous modifications is a powerful approach for quantitatively deciphering the functional crosstalk between different post-translational modifications (PTMs). In this study, we developed an expedient site-specific (poly)ubiquitylation strategy (CAEPL, Cysteine Aminoethylation coupled with Enzymatic Protein Ligation), which integrates the Cys-aminoethylation reaction with the process of ubiquitin-activating enzyme UBA1-assisted native chemical ligation. Using this strategy, we successfully prepared monoubiquitylated and K63-linked di- and tri-ubiquitylated linker histone H1.

View Article and Find Full Text PDF

Catalytic Asymmetric Barbier Reaction of Ketones with Unactivated Alkyl Electrophiles.

J Am Chem Soc

October 2024

Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China.

Article Synopsis
  • The Barbier reaction is a method for adding aldehydes or ketones to organic electrophiles, forming carbon-carbon bonds without needing moisture-sensitive reagents.* -
  • This study introduces a new photoredox-assisted cobalt-catalyzed version of the Barbier reaction, addressing challenges in creating complex chiral tertiary alcohols using unactivated alkyl electrophiles.* -
  • The process can use various alkyl halides and redox-active esters, leading to diverse enantioenriched products, and demonstrates its effectiveness by synthesizing a core structure of a recently FDA-approved drug from 2024.*
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!