1. Muscarinic cholinergic actions were investigated in a population of large multipolar spinal cord neurons in primary dissociated cell culture using conventional intracellular recording and single-microelectrode voltage-clamp techniques. 2. Cholinergic agonists were applied to the surface of neuronal somata by pressure ejecting drug-containing bathing medium from small blunt (2-10 microns) glass micropipettes. Atropine was applied by diffusion from large (20-30 microns) blunt micropipettes positioned near the soma. 3. Muscarine increased action-potential firing and evoked slow sustained membrane depolarization. Action potentials but not slow membrane depolarizations were eliminated by the sodium channel blocker, tetrodotoxin. Muscarine-induced depolarizing responses were unaffected by the calcium channel blocker, cadmium. 4. Depolarizing responses evoked by selective and nonselective muscarinic cholinergic agonists were dose dependent, reversibly antagonized by atropine, and did not desensitize. 5. Muscarine depolarized neurons and decreased membrane conductance during recording with both 3 M KCl- and 4 M KAc-filled intracellular recording micropipettes. When membrane potential was held constant using the single-electrode voltage-clamp technique (KCl-filled micropipettes), muscarine and gamma-aminobutyric acid (GABA) evoked inward currents at resting membrane potential. GABA-induced inward current responses were decreased by depolarization and had reversal potentials near -30 mV, consistent with GABA increasing chloride conductance. Muscarine-induced inward current responses were increased by depolarization and had extrapolated reversal potentials near -80 mV, consistent with muscarine decreasing a potassium conductance. 6. Unlike GABA-induced currents, muscarine-induced currents evoked in normal Tris-buffered saline (5 mM potassium) did not vary as a linear function of membrane potential and did not reverse polarity in six of seven neurons near potassium equilibrium potential. However, in high-potassium medium (15 mM) muscarinic responses did reverse polarity and current was linearly related to membrane potential. Thus, the apparent voltage dependence of muscarine responses was probably due to voltage dependency of the potassium conductance and not due to potassium channel rectification. 7. Preliminary evidence (37) indicates that muscarine decreases a time- and voltage-dependent potassium current in some cultured spinal cord neurons. Whether reduction of m current can completely account for muscarine postsynaptic actions in these cells remains unclear. Muscarine may also block a small population of non-voltage-dependent potassium channels in addition to reducing m current.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/jn.1983.49.3.792 | DOI Listing |
Nanotechnology
January 2025
University of Arkansas, Fayetteville, AR, Fayetteville, Arkansas, 72701-4002, UNITED STATES.
Over the past few decades, significant efforts have been dedicated to advancing technologies for the removal of micropollutants from water. Achieving complete pure water with a single treatment process is challenging and nearly impossible. One promising approach among various alternatives is adopting hybrid technology, which is considered as a win-win technology.
View Article and Find Full Text PDFJ Leukoc Biol
January 2025
Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA.
Regulated sequential exocytosis of neutrophil granules is essential in orchestrating the innate immune response, while uncontrolled secretion causes inflammation. We developed and characterized Nexinhib20, a small-molecule inhibitor that targets azurophilic granule exocytosis in neutrophils by blocking the interaction between the small GTPase Rab27a and its effector JFC1. Its therapeutic potential has been demonstrated in several pre-clinical models of inflammatory disease.
View Article and Find Full Text PDFScience
January 2025
Department of Neuroscience, University of California, Berkeley, Berkeley, CA, USA.
The mechanisms by which the brain replays neural activity sequences remain unknown. Recording from large ensembles of hippocampal place cells in freely behaving rats, we observed that replay content is strictly organized over multiple timescales and governed by self-avoidance. After movement cessation, replays avoided the animal's previous path for 3 seconds.
View Article and Find Full Text PDFPLoS One
January 2025
Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang, China.
DNA methylation is known to be associated with cataracts. In this study, we used a mouse model and performed DNA methylation and transcriptome sequencing analyses to find epigenetic indicators for age-related cataracts (ARC). Anterior lens capsule membrane tissues from young and aged mice were analyzed by MethylRAD-seq to detect the genome-wide methylation of extracted DNA.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America.
Aflatoxin B1 (AFB1) is a class 1 carcinogen and mycotoxin known to contribute to the development of hepatocellular carcinoma (HCC), growth impairment, altered immune system modulation, and malnutrition. AFB1 is synthesized by Aspergillus flavus and is known to widely contaminate foodstuffs, particularly maize, wheat, and groundnuts. The mechanism in which AFB1 causes genetic mutations has been well studied, however its metabolomic effects remained largely unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!