The concanavalin A receptor from human erythrocyte membranes has been isolated by affinity chromatography using the mild, readily-dialyzable detergent dodecyltrimethylammonium bromide. The purified protein has been reincorporated into large unilamellar phospholipid vesicles using a detergent dialysis technique. The mean diameter of these vesicles increases as the lipid: protein ratio decreases. Binding of succinyl-concanavalin A to these vesicles was quantitated using 125I-labelled lectin in a filtration assay. The concanavalin A receptor in lipid bilayer vesicles provides specific high affinity binding sites for succinyl-concanavalin A with an association constant of 2.13 . 10(6) M-1. Scatchard plots indicate positive cooperativity of binding at very low lectin concentrations, a characteristic also seen in concanavalin A binding to intact human erythrocytes. The presence of bovine serum albumin has little effect on lectin binding and is not required for expression of cooperativity. Concanavalin A effectively competes with succinyl-concanavalin A for binding to the vesicles with an association constant of 4.83 . 10(6) M-1. Receptor-bearing vesicles are readily agglutinated by concanavalin A but not by its succinylated derivative. The kinetics of vesicle agglutination are biphasic, with an initial rapid phase followed by a pseudo-first order process. We suggest that studies on reassembled receptor proteins in lipid bilayers can provide valuable insight into receptor involvement in transmembrane signalling events and the factors involved in cell membrane behaviour and cell agglutination.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0005-2736(83)90486-8DOI Listing

Publication Analysis

Top Keywords

concanavalin receptor
12
receptor human
8
human erythrocytes
8
lipid bilayer
8
association constant
8
106 m-1
8
concanavalin
7
vesicles
6
binding
6
lipid
4

Similar Publications

Objective: The purpose of this study was to develop procedures to engineer feline chimeric antigen receptor (CAR) T cells.

Methods: 6 healthy cats were used in this study. Blood was collected, and CD3+ primary T cells were enriched by magnetic activated cell sorting, expanded, and used to generate CAR T cells.

View Article and Find Full Text PDF

Exosomes are a type of membrane vesicle secreted into the extracellular medium by most cell types. They have a great potential for clinical practice as noninvasive biomarkers for diagnosis of various diseases, prognosis, and monitoring of therapy, which stimulates the development of simple methods for isolating exosomes from biological fluids. A novel affine material based on aminosilanized superparamagnetic core‒shell nanoparticles for fast isolation of urinary exosomes is reported.

View Article and Find Full Text PDF

Cellucalst enzyme-assisted extraction of Sargassum horneri enhances the immunomodulation by regulating TLR4/MyD88/NF-kB pathway in murine splenocytes with or without Concanavalin A.

Biomed Pharmacother

December 2024

Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Republic of Korea; Department of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 64243, Republic of Korea. Electronic address:

Sargassum horneri (S. horneri) is an edible species of large brown algae inhabiting along the coasts of northeastern Asia. The study focuses on the impact of celluclast enzyme extract of S.

View Article and Find Full Text PDF

The complex distribution of functional groups in carbohydrates, coupled with their strong solvation in water, makes them challenging targets for synthetic receptors. Despite extensive research into various molecular frameworks, most synthetic carbohydrate receptors have exhibited low affinities, and their interactions with sugars in aqueous environments remain poorly understood. In this work, we present a simple pyridinium-based hydrogen-bonding receptor derived from a subtle structural modification of a well-known tetralactam macrocycle.

View Article and Find Full Text PDF

Bacterial biofilms and intracellular pathogens pose significant challenges in eradication, often leading to persistent infections that are difficult to treat. To address this issue, the hydrophobic biofilm dispersant D-tyrosine is encapsulated within protein-polycation nanoparticles, designed using a mannose-terminated cationic polymer and concanavalin through electrostatic interactions. Thermodynamic studies reveal that free mannosyl groups on the nanoparticle surface promote spontaneous binding to receptor molecules mimicking those on bacterial biofilms and host cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!