Steroid--fluorescein amine and steroid-BSA-fluorescein-isothiocyanate conjugates have been prepared and their ability to bind to oestrogen receptors assessed in competitive binding studies. The binding of all the fluorescent conjugates to uterine cytosol proteins was low when compared with either oestradiol or diethylstilboestrol. A comparative study was carried out to assess the relationship between oestrogen receptor content, determined biochemically, and histochemical localisation of the oestrogen binding components on thin sections of rat uteri, DMBA-induced mammary tumours and also human breast tumour tissue taken at mastectomy. The data indicate that in thin sections of tissue all of these conjugates appear to bind not to the classical oestrogen receptor moiety but to other oestrogen binding proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0277-5379(82)90096-7DOI Listing

Publication Analysis

Top Keywords

oestrogen receptor
8
oestrogen binding
8
thin sections
8
oestrogen
6
studies steroid-fluorescein
4
conjugates
4
steroid-fluorescein conjugates
4
conjugates oestrogen
4
oestrogen target
4
target tissues
4

Similar Publications

Background: Endocrine-disrupting chemicals (EDCs) interfere with the endocrine system and negatively impact reproductive health. Biochanin A (BCA), an isoflavone with anti-inflammatory and estrogen-like properties, has been identified as one such EDC. This study investigates the effects of BCA on transcription, metabolism, and hormone regulation in primary human granulosa cells (GCs), with a specific focus on the activation of bitter taste receptors (TAS2Rs).

View Article and Find Full Text PDF

This study investigates the role of flavonoid Icaritin (ICT) in estrogen-deficient ovariectomized (OVX) female mice by activating the Estrogen receptor (ER)/ Phosphatidylinositol 3-kinase (PI3K)/Protein kinase B (Akt) signaling pathway, potentially delaying Parkinson's disease (PD) progression post-castration. Seventy-five 8-week-old C57BL/6J female mice underwent ovariectomy, followed by MPTP (20 mg/kg) injection for 7 days. ICT (20 mg/kg) was administered for 14 days, and motor function was assessed using various behavioral tests.

View Article and Find Full Text PDF

[Solid, endometrial-like and transitional growth patterns of ovarian high-grade serous carcinoma: a clinicopathological analysis of 25 cases].

Zhonghua Bing Li Xue Za Zhi

February 2025

Department of Pathology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215002, China.

To investigate the clinicopathological characteristics of solid, endometrial-like and transitional (SET) cell growth subtype in high-grade serous ovarian carcinoma (HGSC). Clinical data of 25 cases of HGSC-SET were collected from January 2020 to March 2024 at the Affiliated Suzhou Hospital of Nanjing Medical University, and their histological features were analyzed. Immunohistochemical stains were used to analyze the expression of ER, PR, PAX8, WT-1, p16, p53 and Ki-67.

View Article and Find Full Text PDF

A promising future for breast cancer therapy with hydroxamic acid-based histone deacetylase inhibitors.

Bioorg Chem

January 2025

Department of In Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India. Electronic address:

Histone deacetylases (HDACs) play a critical role in chromatin remodelling and modulating the activity of various histone proteins. Aberrant HDAC functions has been related to the progression of breast cancer (BC), making HDAC inhibitors (HDACi) promising small-molecule therapeutics for its treatment. Hydroxamic acid (HA) is a significant pharmacophore due to its strong metal-chelating ability, HDAC inhibition properties, MMP inhibition abilities, and more.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!