The activity of a glycosphingolipid N-acetylgalactosaminyltransferase (GalNAc transferase) in cultured hamster fibroblasts (NIL-8) was characterized with respect to substrate binding, acceptor specificity, pH optimum and detergent requirements. Of the glycosphingolipid acceptors tested, transferase activity was observed only with globotriaosylceramide. The apparent Km values for uridinediphosphate-N-acetylgalactosamine and globotriasylceramide were 0.14 and 0.42 mM, respectively. The enzyme required Mn2+ for maximum activity (4 mM), and Mg2+ was not able to replace Mn2+. Of the detergents tested, sodium taurodeoxycholate gave the greatest activation of the enzyme at 1 mg/ml. A broad pH optimum (4.5-8.0) was obtained, with maximum activity at pH 6.0 in 2-(N-morpholino)ethanesulfonic acid. Globotetraosylceramide and II3-alpha-N-acetylneuraminyl-lactosylceramide inhibited transferase activity with globotriaosylceramide as substrate, but lactosylceramide had no effect on the activity with this acceptor. The major product of the assay was shown to be a tetraglycosylceramide with a terminal beta-N-acetylgalactosamine moiety by co-migration with authentic globotetraosylceramide on TLC plates and by cleavage of the labeled N-acetylgalactosamine from the product by jack bean beta-hexosaminidase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0005-2760(82)90339-3 | DOI Listing |
Viruses
December 2024
Department of Biological Sciences and Biotechnology, School of Life Sciences, Botswana International University of Science and Technology, Private Bag 16, Palapye 10071, Botswana.
Cell culture underpins virus isolation and virus neutralisation tests, which are both gold-standard diagnostic methods for foot-and-mouth disease (FMD). Cell culture is also crucial for the propagation of inactivated foot-and-mouth disease virus (FMDV) vaccines. Both primary cells and cell lines are utilised in FMDV isolation and propagation.
View Article and Find Full Text PDFBiotechnol Prog
January 2025
Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Vienna, Austria.
We present the first use of a bioengineered mammalian transposase system derived from Myotis lucifugus (bMLT) for integration of expression vectors into the CHO genome, focusing on GFP and trastuzumab production. Initially, CHO-K1 cells are transfected with a GFP reporter and varying amounts of bMLT DNA or mRNA. GFP expression is monitored over 17 weeks without selective pressure.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
School of Interdisciplinary Research, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
Monoclonal antibodies are extensively used as biotherapeutics for treatment of a variety of diseases. Glycosylation of therapeutic antibodies is considered a critical quality attribute as it influences the effector function, circulatory half-life, immunogenicity, and eventually efficacy and patient safety. During upstream process development, media components play a significant role in determining the glycosylation profile.
View Article and Find Full Text PDFBiotechnol J
January 2025
Biologics Process Research & Development, Merck & Co., Inc., Rahway, New Jersey, USA.
Chinese hamster ovary (CHO) cells are widely used to produce recombinant proteins, including monoclonal antibodies (mAbs), through various process modes. While fed-batch (FB) processes have been the standard, a shift toward high-density perfusion processes is being driven by increased productivity, flexible facility footprints, and lower costs. Ensuring the clearance of process-related impurities, such as host cell proteins (HCPs), is crucial in biologics manufacturing.
View Article and Find Full Text PDFJ Biotechnol
January 2025
Johns Hopkins Biomedical Engineering, USA; Johns Hopkins University Department of Molecular Biology and Genetics, Baltimore, MD, USA; Johns Hopkins University Department of Medicine, Division of Infectious Disease, Baltimore, MD, USA. Electronic address:
Chinese Hamster Ovary (CHO) cells produce monoclonal antibodies and other biotherapeutics at industrial scale. Despite their ubiquitous nature in the biopharmaceutical industry, little is known about the behaviors of individual transfected clonal CHO cells. Most CHO cells are assessed on their stability, their ability to produce the protein of interest over time.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!