Seven out of nine patients with chronic inappropriate secretion of antidiuretic hormone were successfully treated with 40 mg frusemide daily. One patient needed 80 mg, and the remaining patient achieved only a small increase in diuresis after 40 mg frusemide; this was probably related to his low creatinine clearance. In order to maintain a salt intake high enough to compensate for the loss of urine electrolytes 3 to 6 g sodium chloride was added as tablets to the sodium-free diet in six patients. Hypokalaemia occurred in five patients but was easily corrected with either supplements of potassium chloride or a potassium-sparing diuretic. These findings add further weight to evidence that Frusemide is a good alternative for the treatment of patients with inappropriate secretion of antidiuretic hormone who cannot tolerate water restriction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1498910 | PMC |
http://dx.doi.org/10.1136/bmj.285.6335.89 | DOI Listing |
Anal Chim Acta
February 2025
School of Chemistry and Chemical Engineering, Anhui University, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China; School of Chemical and Environmental Engineering, Anhui Polytechnic University, 241000, Wuhu, PR China. Electronic address:
A pivotal pathway of photodynamic therapy (PDT) is to prompt mitochondrial damage by reactive oxygen species (ROS) generation, thus leading to cancer cell apoptosis. However, mitochondrial autophagy is induced during such a PDT process, which is a protective mechanism for cancer cell homeostasis, resulting in undermined therapeutic efficacy. Herein, we report a series of meticulously designed donor (D)-π-acceptor (A) photosensitizers (PSs), characterized by the strategic modulation of thiophene π-bridges, which exhibit unparalleled mitochondrial targeting proficiency.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Centre of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China. Electronic address:
This study investigated the effects of rumen-degradable starch (RDS) on lactation performance, gastrointestinal fermentation, and plasma metabolomics in dairy cows. Six mid-lactation cows, fitted with rumen, duodenum, and ileum cannulas, were used in a duplicated 3 × 3 Latin square design with 28-day periods. The cows were fed a low RDS (LRDS; 62.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
School of Marine Sciences, Ningbo University, Ningbo 315211, China.
In order to investigate the causes of population degradation and resource decline, this thesis investigated the ecotoxicological effects of heavy metal Cu(Ⅱ) on the embryonic development of Sepiella maindroni. Results indicate significant effects of Cu(Ⅱ) concentrations on the developmental toxicity, teratogenicity, and lethality of S. maindroni embryos.
View Article and Find Full Text PDFPoult Sci
January 2025
College of Animal Science, Zhejiang University, Hangzhou 310058, China. Electronic address:
The present study investigated the impact of butyrate glycerides (BG) on lipid metabolism, intestinal morphology, and microbiota of laying hens. Four hundred eighty 54-week-old Hy-line Brown laying hens were randomly selected and divided into five groups. The control group (ND) was fed a basal diet.
View Article and Find Full Text PDFNutrients
January 2025
Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan.
Background/objectives: The DNA methylation of neonatal cord blood can be used to accurately estimate gestational age. This is known as epigenetic gestational age. The greater the difference between epigenetic and chronological gestational age, the greater the association with an inappropriate perinatal fetal environment and development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!