Data are presented regarding the final results of the Bentivoglio (Bologna) project on long-term carcinogenicity bioassays of vinyl chloride (VC). The experimental project studied the effects of the monomer, administered by different routes, concentrations and schedules of treatment, to animals (near 7000) of different species, strains, sex and age. To our knowledge this is the largest experimental carcinogenicity study performed on a single compound by a single institution. The results indicate that VC is a multipotential carcinogen, affecting a variety of organs and tissues. In the experimental conditions studied, the neoplastic effects of the monomer were also detected at low doses. The experimental and biological factors greatly affect the neoplastic response to VC. Long-term carcinogenicity bioassays are, at present, a unique tool for the identification and quantification of environmental and occupational risks. Precise and highly standardized experimental procedures are needed to obtain data for risk assessment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1568874PMC
http://dx.doi.org/10.1289/ehp.81413DOI Listing

Publication Analysis

Top Keywords

carcinogenicity bioassays
12
bioassays vinyl
8
vinyl chloride
8
risk assessment
8
long-term carcinogenicity
8
effects monomer
8
experimental
6
carcinogenicity
4
chloride monomer
4
monomer model
4

Similar Publications

In May 2021, the M/V ship fire disaster led to the largest maritime spill of resin pellets (nurdles) and burnt plastic (pyroplastic). Field samples collected from beaches in Sri Lanka nearest to the ship comprised nurdles and pieces of pyroplastic. Three years later, the toxicity of the spilled material remains unresolved.

View Article and Find Full Text PDF

There is growing recognition across broad sectors of the toxicology community that gene expression biomarkers have the potential to identify genotoxic and nongenotoxic carcinogens through a weight-of-evidence approach, providing opportunities to reduce reliance on the 2-year bioassay to identify carcinogens. In August 2022, a workshop within the International Workshops on Genotoxicity Testing (IWGT) was held to critically review current methods to identify genotoxicants using various 'omics profiling methods. Here, we describe the findings of a workshop subgroup focused on the state of the science regarding the use of biomarkers to identify chemicals that act as genotoxicants in vivo.

View Article and Find Full Text PDF

RNA mA involves in regulation of oxidative stress and apoptosis may via NF-kB pathway in cadmium-induced lung cells.

Cell Death Discov

January 2025

Institute of Preventive Medicine, School of Public Health, Dali University, No. 22, Wanhua Road, Dali, Yunnan, 671000, PR China.

Cadmium has been identified as an environmental pollutant and a carcinogen. N-methyladenosine (mA) plays a crucial role in the development of lung tumors, but the mechanisms remain incompletely clarified. In present study, our data demonstrated that prolonged treatment of 1 μmol/L CdSO for 40 passages in bronchial epithelial cells (Beas-2B cells) resulted in the development of a malignant phenotype, which manifested as boosted proliferation, migration and invasion capacity as well as apoptosis reduction.

View Article and Find Full Text PDF

Evidences of radioresistance in from Northeastern Brazil.

Int J Radiat Biol

January 2025

Laboratório de Genética, Centro Acadêmico de Vitória, Universidade Federal de Pernambuco (UFPE), Vitória de Santo Antão, Pernambuco, Brazil.

Background: Ionizing radiation can inflict cellular damage, the severity of which is determined by the dose, exposure duration, and its capacity to penetrate cells. Some studies have demonstrated that genetic and epigenetic mechanisms have enabled organisms to develop adaptive traits and enhance their ability to repair DNA damage. Northeastern Brazil, a region containing rocky outcrops rich in uranium and thorium, is an ideal scenario to study natural radiation and its effects on natural populations.

View Article and Find Full Text PDF

Strategies for the Immobilization and Signal Amplification of a Double Nanobody Sandwich ELISA for Human Microsomal Epoxide Hydrolase.

Anal Chem

December 2024

Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States.

The microsomal epoxide hydrolase (mEH) is important in the detoxification of carcinogens in the liver and other tissues but is also a blood biomarker of hepatitis and liver cancer. Improved analytical methods are needed for the study of its role in the metabolism of xenobiotics and endogenous roles as a blood biomarker of diseases. The development of a double nanobody sandwich ELISA offers significant improvements over traditional polyclonal or monoclonal antibody-based assays, enhancing both the homogeneity and the stability of assay production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!