The influence of changes in the physico-chemical parameters of serogroup A meningococcal polysaccharide on its immunogenicity for mice was studied by means of passive local hemolysis in gel and the passive hemagglutination test. The polysaccharide was depolymerized by heating at 100 degrees C for 5, 30 and 120 minutes; during this process the progressing decrease of the molecular weight and the content of O-acetyl groups in the preparation could be observed. Mice showed high sensitivity to changes in the above-mentioned physico-chemical parameters, which was manifested by a sharp drop in the intensity of the immune response of the animals to the heated samples of the antigen. The role of the parameters under study, i. e. the molecular weight of the antigen and the presence of O-acetyl groups, in the manifestations of the immunogenicity of polysaccharide A is discussed.

Download full-text PDF

Source

Publication Analysis

Top Keywords

physico-chemical parameters
8
molecular weight
8
o-acetyl groups
8
[immunogenicity surface
4
polysaccharide
4
surface polysaccharide
4
polysaccharide serotype
4
serotype meningococci
4
meningococci possessing
4
possessing physico-chemical
4

Similar Publications

Incidental nanoparticle characterisation in industrial settings to support risk assessment modelling.

Int J Hyg Environ Health

January 2025

Institute of Environmental Assessment and Water Research - Spanish Research council (IDAEA-CSIC), Barcelona, 08034, Spain; Spanish Ministry of Ecological Transition, Pollution Prevention Unit, Pza. San Juan de la Cruz 10, 28071, Madrid, Spain.

Research on nanoparticle (NP) release and potential exposure can be assessed through experimental field campaigns, laboratory simulations, and prediction models. However, risk assessment models are typically designed for manufactured NP (MNP) and have not been adapted for incidental NP (INP) properties. A notable research gap is identifying NP sources and their chemical, physical, and toxicological properties, especially in real-world settings.

View Article and Find Full Text PDF

The intensive use of chemical fertilizers for vegetable cultivation to achieve higher productivity causes soil degradation, resulting in an alarming decline (25-50%) in nutritional quality and a reduction in a wide variety of nutritionally essential minerals and nutraceutical compounds in high-yielding vegetable crops over the last few decades. To restore the physio-chemical and biological qualities of soil as well as the nutritional and nutraceutical qualities of fresh produce, there is a growing desire to investigate the remedial impacts of organic sources of nutrition. This study specifically focused on the impact of six different ratios of chemical fertilizers and organic sources with microbial inoculation on vegetable productivity, nutrition quality, and soil health parameters.

View Article and Find Full Text PDF

This study aims to determine the spatial distribution of heavy metal pollution in Ermenek Dam Lake, water quality assessment and pollution sources. For this purpose, samples were taken 6 times a year from 12 points determined in 2024. Physico-chemical parameters and heavy metals were analyzed in the study.

View Article and Find Full Text PDF

Physico-chemical, nutritional, and anti-inflammatory properties of processed Garcinia pedunculata fruit: A combined in vitro and in silico approach.

Food Res Int

February 2025

Agrotechnology and Rural Development Division, CSIR-North East Institute of Science and Technology (NEIST), Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:

This study aimed to evaluate the physico-chemical, nutritional, antioxidant, and anti-inflammatory properties of Garcinia pedunculata fruit powders obtained from different drying methods to explore their potential use in health-promoting functional foods. The fruits were processed at mature and ripe stages. Molecular modeling studies were also performed to find effective inhibitors from G.

View Article and Find Full Text PDF

Optimization of Leaching of Lithium and Cobalt from Spent Lithium-Ion Batteries by the Choline Chloride-Citric Acid/Malonic Acid DES Using Response Surface Methodology.

Environ Res

January 2025

Department of Chemistry, Institute of Technical Education and Research (FET), Siksha 'O' Anusandhan Deemed to be University, Khandagiri Square, Bhubaneswar-751030, Odisha, India. Electronic address:

Deep eutectic solvents (DESs) are eco-friendly leaching agents which have emerged as potential candidate for recovery of valuable metals from spent LIBs (lithium-ion batteries). Earlier reports show use of more mount of chemicals, long leaching duration and less efficiency. The present work has been carried out to observe the leaching efficiency of two DES-water blend systems such as ChCl:CA(2:1) +30% HO and ChCl:MA(1:1)+20% HO for the leaching of Li and Co from cathodic material of spent LIBs using design of experiments and optimization through CCD (central composite design) of Response surface methodology(RSM) approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!