Transpeptidation reactions catalyzed by chymotrypsin, pepsin, leucine aminopeptidase and thermolysin have been studied in heavy oxygen water (H2 18O). The 18O incorporation into the peptide bond of transpeptidation products and into the non-hydrolyzed substrate has been measured. The rates of 18O exchange in the carboxylic groups of N-acetylphenylalanine and leucine, catalyzed by pepsin and leucine aminopeptidase, respectively, have also been determined. These rates have been compared with that of the exchange in the presence of amino compounds which reversibly form amide bonds with the above carboxyl-containing substances. The data obtained show that, in contrast to chymotrypsin, other enzymes studied do not form 'acyl-enzymes' but function by the mechanism of general-base catalysis. In other words, their catalytically active groups promote the abstraction of a proton from the water molecule, which attacks the susceptible bond of the substrate. The structure of intermediate compounds in this type of catalysis and the mechanism of the transpeptidation reaction are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1432-1033.1981.tb06321.xDOI Listing

Publication Analysis

Top Keywords

heavy oxygen
8
pepsin leucine
8
leucine aminopeptidase
8
studies mechanisms
4
mechanisms action
4
action proteolytic
4
proteolytic enzymes
4
enzymes heavy
4
oxygen exchange
4
exchange transpeptidation
4

Similar Publications

Chronic/heavy exposure with ethanol is associated with risk of type 2 diabetes, due to β-cells dysfunction. It has been reported that ethanol can induce oxidative stress directly or indirectly by involvement of mitochondria. We aimed to explore the protective effects of the crocin/gallic acid/L-alliin as natural antioxidants separately on ethanol-induced mitochondrial damage.

View Article and Find Full Text PDF

Deciphering antioxidant interactions via data mining and RDKit.

Sci Rep

January 2025

Department of Chemistry, Clemson University, 211 S. Palmetto Blvd, Clemson, SC, 29634, USA.

Minimizing the oxidation of lipids remains one of the most important challenges to extend the shelf-life of food products and reduce food waste. While most consumer products contain antioxidants, the most efficient strategy is to incorporate combinations of two or more compounds, boosting the total antioxidant capacity. Unfortunately, the reasons for observing synergistic / antagonistic / additive effects in food samples are still unclear, and it is common to observe very different responses even for similar mixtures.

View Article and Find Full Text PDF

Immobilization or mobilization of heavy metal(loid)s in lake sediment-water interface: Roles of coupled transformation between iron (oxyhydr)oxides and natural organic matter.

Sci Total Environ

December 2024

Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, Nanchang University, Nanchang 330031, China; School of Resources and Environment, Nanchang University, Nanchang 330031, China. Electronic address:

Iron (Fe) (oxyhydr)oxides and natural organic matter (NOM) are active substances ubiquitously found in sediments. Their coupled transformation plays a crucial role in the fate and release risk of heavy metal(loid)s (HMs) in lake sediments. Therefore, it is essential to systematically obtain relevant knowledge to elucidate their potential mechanism, and whether HMs provide immobilization or mobilization effect in this ternary system.

View Article and Find Full Text PDF

The Pb tolerance initiated by LdZIP8 in Lymantria dispar larvae: An effective defense against heavy metal stress.

J Hazard Mater

December 2024

School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China. Electronic address:

Pb is a prevalent heavy metal contaminant in the habitats of herbivorous insects. This study investigated the tolerance level of Lymantria dispar larvae to Pb and its corresponding mechanism focusing on the role of ZIP genes. The detrimental impacts of Pb on larval growth and survival exhibited a dose-dependent relationship, with a survival rate of 48 % even at the extreme concentration of 3424 mg/kg.

View Article and Find Full Text PDF

Microplastics as adsorbent for Pb and Cd: A comparative study of polypropylene, polyvinyl chloride, high-density polyethylene, and low-density polyethylene.

J Contam Hydrol

December 2024

Division of Earth and Environmental System Sciences-Major of Environmental Geosciences, Pukyong National University, Busan 48513, South Korea; Wible Co Ltd, Pukyong National University, 365 Sinseon-ro, Nam-gu, Busan 48547, South Korea. Electronic address:

Microplastics (MPs) in aquatic environments adsorb heavy metals, thereby posing potential environmental risks. However, further research is needed to elucidate the adsorption behavior of different types of MPs for various heavy metals. The aim of this study was to characterize four types of MPs: polypropylene (PP), polyvinyl chloride (PVC), high-density polyethylene (HDPE), and low-density polyethylene (LDPE).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!