Pseudomonas aeruginosa grows readily on synthetic media containing succinate (36 mM) and ammonium chloride as sole source of nitrogen (34 mM) ; addition of tyrosine or phenylalanine (2,7 mM) is followed by an increase of both the growth rate and pyocyanine production. Several molecules structurally related to tyrosine give similar results. Tyrosine partially suppresses the inhibitory effect of both cyanide and azide. The results are discussed with regard to the biosynthesis of aromatic aminoacids and of phenazine pigments.

Download full-text PDF

Source

Publication Analysis

Top Keywords

tyrosine phenylalanine
8
[influence supplementary
4
tyrosine
4
supplementary tyrosine
4
phenylalanine bacterial
4
bacterial growth
4
growth pigmentation
4
pigmentation "pseudomonas
4
"pseudomonas aeruginosa"
4
aeruginosa" author's
4

Similar Publications

In order to study the pattern of changes in quality of marinated Chinese mitten crabs (Eriocheir sinensis) during cold storage, three aspects of sensory, taste and odor were investigated. Sensory evaluation and total volatile basic nitrogen (TVB-N) were measured in viscera and abdomen muscle at 0, 7, 15 and 30 days of storage at 4°C. Sensory scores significantly declined at 15 d, coinciding with TVB-N levels exceeding 25 mg N/100 g.

View Article and Find Full Text PDF

Tyrosinase-Catalyzed Peptide Stapling Using para-Amino Phenylalanine and Tyrosine Anchoring Residues.

Angew Chem Int Ed Engl

January 2025

Second Military Medical University, School of Pharmacy, 325 Guohe Road, 200433, Shanghai, CHINA.

Peptide stapling techniques have historically relied on metal-catalyzed chemical reactions, with no examples using enzymes. Here, inspired by tyrosinase-mediated oxidation, we describe the efficient side-chain to side-chain coupling of p-amino phenylalanine (Z) and tyrosine (Y) amino acids using a commercially available tyrosinase. Stapling reactions between the i, i+3 to i, i+7 positions were all performed, proceeding in good conversion and under mild conditions compatible with various side chains, functional motifs and ring sizes, with the Z-Y product found to be more stable and obtained in a higher yield than the Y-Z product.

View Article and Find Full Text PDF

Blueberry plants are among the most important fruit-bearing shrubs, but they have shallow, hairless roots that are not conducive to water and nutrient uptake, especially under drought conditions. Therefore, the mechanism underlying blueberry root drought tolerance should be clarified. Hence, we established a yeast expression library comprising blueberry genes associated with root responses to drought stress.

View Article and Find Full Text PDF

Nano-LC with New Hydrophobic Monolith Based on 9-Antracenylmethyl Methacrylate for Biomolecule Separation.

Int J Mol Sci

December 2024

Department of Chemistry, College of Science, Taif University, Taif P.O. Box 11099, Saudi Arabia.

In this study, new monolithic poly(9-anthracenylmethyl methacrylate-co-trimethylolpropane trimethacrylate (TRIM) columns, referred as ANM monoliths were prepared, for the first time, and were used for the separation media for biomolecules and proteomics analysis by nano-liquid chromatography (nano-LC). Monolithic columns were prepared by in situ polymerization of 9-anthracenylmethyl methacrylate (ANM) and trimethylolpropane trimethacrylate (TRIM) in a fused silica capillary column of 100 µm ID. Polymerization solution was optimized in relation to monomer and porogenic solvent.

View Article and Find Full Text PDF

Comparative Transcriptome Analysis Revealing the Potential Salt Tolerance Mechanism of Exogenous Abscisic Acid Application in .

Int J Mol Sci

December 2024

State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.

, which contains abundant pharmacologically active coumarins, is usually used as a rotation crop and green manure worldwide. Abscisic acid (ABA) is a crucial plant hormone that plays an important role in plant stress responses. There is a paucity of information about the ABA signaling pathway and its regulatory network in .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!