With islet cell transplantation it would be possible to achieve a generally improved treatment of diabetes mellitus and avoid late complications. Since the problems of preparation, conservation and implantation of the islet cells have been satisfactorily solved, it ought to be possible to master the immune reaction in the future. The successful progressive development of islet cell transplantation in recent years justifies this optimism.
Download full-text PDF |
Source |
---|
Cell Tissue Res
January 2025
Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Qatar Foundation (QF), Hamad Bin Khalifa University (HBKU), Doha, Qatar.
Impaired insulin secretion contributes to the pathogenesis of type 1 diabetes mellitus through autoimmune destruction of pancreatic β-cells and the pathogenesis of severe forms of type 2 diabetes mellitus through β-cell dedifferentiation and other mechanisms. Replenishment of malfunctioning β-cells via islet transplantation has the potential to induce long-term glycemic control in the body. However, this treatment option cannot widely be implemented in clinical due to healthy islet donor shortage.
View Article and Find Full Text PDFCell Transplant
January 2025
Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, CA, USA.
Although islet transplantation is effective in reducing severe hypoglycemia events and controlling blood glucose in patients with type 1 diabetes, maintaining islet graft function long-term is a significant challenge. Islets from multiple donors are often needed to achieve insulin independence, and even then, islet function can decline over time when metabolic demand exceeds islet mass/insulin secretory capacity. We previously developed a method that calculated the islet graft function index (GFI) and a patient's predicted insulin requirement (PIR) using mathematical nonlinear regression.
View Article and Find Full Text PDFCell Transplant
January 2025
Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA.
Compared to primary pancreatic islets, insulinoma cell-derived 3D pseudoislets offer a more accessible, consistent, renewable, and widely applicable model system for optimization and mechanistic studies in type 1 diabetes (T1D). Here, we report a simple and efficient method for generating 3D pseudoislets from MIN6 and NIT-1 murine insulinoma cells. These pseudoislets are homogeneous in size and morphology (~150 µm), exhibit functional glucose-stimulated insulin secretion (GSIS) up to 18 days (NIT-1) enabling long-term studies, are produced in high yield [>35,000 Islet Equivalence from 30 ml culture], and are suitable for both and studies, including for encapsulation studies.
View Article and Find Full Text PDFBiol Pharm Bull
January 2025
Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan.
The hypoglycemic effects of nateglinide (NTG) were examined in rats with acute peripheral inflammation (API) induced by carrageenan treatment, and the mechanisms accounting for altered hypoglycemic effects were investigated. NTG was administered through the femoral vein in control and API rats, and its plasma concentration profile was characterized. The time courses of the changes in plasma glucose and insulin levels were also examined.
View Article and Find Full Text PDFGastroenterol Clin North Am
March 2025
Department of Pediatrics, University of Minnesota, MMC 391, 420 Delaware Street Southeast, Minneapolis, MN 55455, USA. Electronic address:
Diabetes (DM) can occur as a complication of acute, acute recurrent, or chronic pancreatitis, affecting more than 30% of adults with chronic pancreatitis. Data on the pathophysiology and management are limited, especially in pediatric population. Proposed mechanisms include insulin deficiency, insulin resistance, decreased pancreatic polypeptide, and possible beta-cell autoimmunity (in a small subset).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!