In preparation for the isolation and biochemical characterization of putative RNA polymerase mutants, DNA-dependent RNA polymerases of Drosophila melanogaster adults were isolated and partially characterized. Approximately 70% of the female adult RNA polymerase is located in ovaries. Multiple forms of ovarian RNA polymerases I and II are separable by DEAE-Sephadex chromatography. The two forms of RNA polymerase II differ in ammonium sulfate optima. RNA polymerase IIA is more active with double-stranded DNA as template, whereas RNA polymerase IIB transcribes single-stranded DNA most efficiently. Rechromatography of RNA polymerase IIA on DEAE-Sephadex results in the loss of ability of this form to transcribed double-stranded DNA most efficiently. Ovariectomized carcasses have two forms of RNA polymerase I and one form of RNA polymerase II and each transcribes single-stranded DNA most efficiently. As judged by gel filtration chromatography, female adult extracts have forms of RNA polymerase II that differ in molecular weight and template preference.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00486134DOI Listing

Publication Analysis

Top Keywords

rna polymerase
36
rna polymerases
12
forms rna
12
dna efficiently
12
rna
11
polymerase
9
dna-dependent rna
8
polymerases drosophila
8
drosophila melanogaster
8
melanogaster adults
8

Similar Publications

Article Synopsis
  • RbpA is a critical protein for Mycobacterium tuberculosis growth, impacting transcription and antibiotic response, but its regulatory mechanisms are not fully understood.
  • Significant structural changes in RNA polymerase occur when it interacts with RbpA, revealing important amino acids for transcription regulation and dynamic behavior of the complex.
  • The study identifies potential ligands for RbpA's interaction site, laying the groundwork for future research on developing inhibitors that target RbpA's regulatory role in transcription.
View Article and Find Full Text PDF

Passion fruit (Passiflora edulis) is a commercially important crop known for its nutritional value, high antioxidant content, and use in beverages and desserts. Gulupa baciliform virus A (GBVA), tentatively named Badnavirus in the family Caulimoviridae, is a cryptic circular double-stranded DNA (dsDNA, ≈6,951 bps) virus recently reported in Colombia with asymptomatic infection of passion fruit (Sepúlveda et al. 2022).

View Article and Find Full Text PDF

The roots of Salvia yunnanensis, an herbaceous perennial widely distributed in Southwest China, is often used as a substitute for S. miltiorrhiza, a highly valued plant in traditional Chinese medicine (Wu et al. 2014).

View Article and Find Full Text PDF

sp. nov., a new hyphomycete from desertified rocky soil in southwest China.

Int J Syst Evol Microbiol

January 2025

Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, Yunnan, PR China.

Two strains of , identified based on morphology and phylogenetic analysis, were isolated from rocky desertification soils in Yunnan province. Phylogenetic analyses inferred from three loci (the internal transcribed spacer of the nuclear ribosomal RNA gene, β-tubulin and RNA polymerase II second-largest subunit) showed that the two strains formed a single clade and were introduced as a new species of , is characterized by having ampulliform or broadly fusiform conidiogenous cells and dark olivaceous-green, oblong-ellipsoidal conidia. Phylogenetically, is most closely related to , but it distinguishes the latter by longer and narrower conidia.

View Article and Find Full Text PDF

PIWI-interacting RNAs (piRNAs) are a class of small noncoding RNAs associated with PIWI proteins within the male germline, and they play significant roles in maintaining genome stability via the modulation of gene expression. The piRNAs are implicated in the progression of various cancers, but the simultaneous monitoring of multiple piRNAs remains a challenge. Herein, we construct a single-molecule biosensor based on polymerization-transcription-mediated target regeneration for the simultaneous one-pot detection of multiple piRNAs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!