The structure of a mannose-rich glycopeptide from a human pathological IgM has been investigated. It belongs to the group I (simple) glycopeptides and contains only mannose and N-acetylglucosamine residues in a molar ratio of 10:2. The structures of its oligosaccharide moiety and peptide chain have been determined: its molecular localization is specified and the relation between its biosynthesis and the oligosaccharide structure determine is discussed. Based on the alpha- and beta-mannosidase digestions and permethylation studies for the oligosaccharide moiety, and on the results obtained after sequential analysis of the peptide chain, the following structure is proposed for the mannose-rich IgM Du glycopeptide: (Formula: see text). The recovery of one molecule of this glycopeptide per molecule of heavy chain and the determination of the amino acid sequence have led us to locate this glycopeptide on asparagine 402 of the Fc portion of the heavy chain mu of IgM Du.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0005-2795(81)90193-8DOI Listing

Publication Analysis

Top Keywords

structure mannose-rich
8
mannose-rich glycopeptide
8
oligosaccharide moiety
8
peptide chain
8
heavy chain
8
glycopeptide
5
localization structure
4
glycopeptide pathologic
4
pathologic immunoglobulin
4
immunoglobulin structure
4

Similar Publications

The importance of lectins in biological processes such as pathogen recognition, cell adhesion, and cell recognition is well documented. C-Type lectins, which require calcium for binding, play an important role in the innate immune response by engaging carbohydrates presented as part of the human and pathogen glycocalyx. For example, lectins such as MBL, Dectin-2, langerin and DC-SIGN selectively recognize mannose rich (high-mannose) structures presented as part of the glycocalyx.

View Article and Find Full Text PDF

Microalgae are a renewable and promising biomass for large-scale biofuel, food and nutrient production. However, their efficient exploitation depends on our knowledge of the cell wall composition and organization as it can limit access to high-value molecules. Here we provide an atomic-level model of the non-crystalline and water-insoluble glycoprotein-rich cell wall of Chlamydomonas reinhardtii.

View Article and Find Full Text PDF

In this study, a novel homogeneous mannose-rich polysaccharide named EPS-1 from the fermentation broth of H4-2 was isolated and purified by anion exchange column chromatography and gel column chromatography. The primary structure of EPS-1 was analyzed by high-performance liquid chromatography, Fourier-transform infrared spectroscopy, gas chromatography-mass spectrometry, and nuclear magnetic resonance. The results indicated that EPS-1 had typical functional groups of polysaccharides.

View Article and Find Full Text PDF

Many secreted eukaryotic proteins are N-glycosylated with oligosaccharides composed of a high-mannose N-glycan core and, in the specific case of yeast cell-wall proteins, an extended α-1,6-mannan backbone carrying a number of α-1,2- and α-1,3-mannose substituents of varying lengths. α-Mannosidases from CAZy family GH92 release terminal mannose residues from these N-glycans, providing access for the α-endomannanases, which then degrade the α-mannan backbone. Most characterized GH92 α-mannosidases consist of a single catalytic domain, while a few have extra domains including putative carbohydrate-binding modules (CBMs).

View Article and Find Full Text PDF

Rational search of a ligand for a specific receptor is a cornerstone of a typical drug discovery process. However, to make it more "rational" one would appreciate having detailed information on the functional groups involved in ligand-receptor interaction. Typically, the 3D structure of a ligand-receptor complex can be built on the basis of time-consuming X-ray crystallography data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!