The effects of temperature and attractants on chemotaxis in psychrotrophic Pseudomonas fluorescens were examined using the Adler capillary assay technique. Several organic acids, amino acids, and uronic acids were shown to be attractants, whereas glucose and its oxidation products, gluconate and 2-ketogluconate, elicited no detectable response. Chemotaxis toward many attractants was dependent on prior growth of the microorganism with these compounds. However, the organic acids, malate and succinate, caused strong chemotactic responses regardless of the carbon source used for growth of the bacteria. The temperature at which the cells were grown (30 or 5 degrees C) had no significant detectable effect on chemotaxis to the above attractants. The temperature at which the cells were assayed appeared to affect the rate but the extent of the chemotactic response, nor the concentration response curves. The ratios of the rate of accumulation of cells to the attractant malate were approximately 2, 4, and 1 at 30, 17, and 5 degrees C, respectively. Strong chemotactic responses were observed with cells assayed at temperatures approaching 0 degree C and appeared to be functional over a broad temperature range of 3 to 35 degrees C.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC294240 | PMC |
http://dx.doi.org/10.1128/jb.143.1.338-342.1980 | DOI Listing |
Microorganisms
December 2024
Applied Biotechnology Department, University of Technology and Applied Sciences, P.O. Box 411, Sur 411, Oman.
Determining the microbial quality and safety of meat is crucial because of its high potential to harbor pathogens. To address the critical knowledge gap and shed light on potential contamination risk in the meat supply chain, this study aimed to assess the underexplored microbial quality and safety of marketed beef meat in Oman. Thirty-three beef meat samples from six hypermarkets were analyzed for Aerobic Plate Count (APC), Psychrotrophic Bacteria Count (PBC), and coliform and counts.
View Article and Find Full Text PDFMicroorganisms
December 2024
Departamento de Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora 36036-900, MG, Brazil.
are significant spoilage bacteria in raw milk and dairy products, primarily due to their ability to form biofilms and resist disinfection. This study explored the effects of the phage combined with sodium hypochlorite in reducing biofilms on stainless steel at various temperatures and ages. Biofilms were formed using UFV 041 in UHT milk, incubated at 4 °C and 30 °C for 2 and 7 days.
View Article and Find Full Text PDFJ Environ Manage
January 2025
iB(2) Laboratory, Department of Biology, Faculty of Sciences, University of Porto, Portugal; Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Spain; LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Portugal. Electronic address:
The emergence of bacterial resistance and the increasing restrictions on the use of agrochemicals are boosting the search for novel, sustainable antibiotics. Antimicrobial peptides (AMPs) arise as a new generation of antibiotics due to their effectiveness at low doses and biocompatibility. We compared the antimicrobial activity of four promising AMPs (CA-M, BP100, RW-BP100, and 3.
View Article and Find Full Text PDFPlant roots form associations with both beneficial and pathogenic soil microorganisms. While members of the rhizosphere microbiome can protect against pathogens, the mechanisms are poorly understood. We hypothesized that the ability to form a robust biofilm on the root surface is necessary for the exclusion of pathogens; however, it is not known if the same biofilm formation components required are necessary WCS365 is a beneficial strain that is phylogenetically closely related to an opportunistic pathogen N2C3 and confers robust protection against N2C3 in the rhizosphere.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia, Iran.
This study investigates the biosynthesis of iron oxide nanoparticles (FeONPs) using the cell-free supernatant of Pseudomonas fluorescens. The synthesized FeONPs were characterized through UV-VIS, XRD, FTIR, FESEM, EDX, TEM, BET, and VSM analyses. The XRD results confirmed that FeONPs were successfully synthesized and EDX analysis indicated that iron accounted for 89.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!