1. The effect of deoxycholate and cholera toxin on the transfer of water, sodium, potassium and chloride and on mucosal permeability was studied in perfusion experiments on rat colon in vivo. The influence of both secretagogues on surface morphology was assessed by scanning electron microscopy. 2. Deoxycholate turned the absorption of water, sodium and chloride to secretion and enhanced potassium secretion. Cholera toxin induced water and sodium secretion, inhibited chloride absorption and enhanced potassium secretion. 3. Deoxycholate increased reversibly the mucosal permeability as measured by the colonic clearance of 51CrEDTA and glucose, whereas cholera toxin decreased the colonic 51CrEDTA clearance. 4. Deoxycholate caused protrusion of the luminal cell surface and an increase of exfoliation of epithelial cells. The epithelial continuity was preserved. The only change induced by cholera toxin was an enhanced mucus extrusion. 5. Our results are consistent with the view that deoxycholate causes fluid secretion by filtration whereas cholera toxin enhances the secretory activity of the epithelium.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00502580DOI Listing

Publication Analysis

Top Keywords

cholera toxin
24
water sodium
12
rat colon
8
mucosal permeability
8
enhanced potassium
8
potassium secretion
8
cholera
6
toxin
6
deoxycholate
6
secretion
5

Similar Publications

The parabrachial nucleus (PB), located in the dorsolateral pons, contains primarily glutamatergic neurons that regulate responses to a variety of interoceptive and cutaneous sensory signals. One lateral PB subpopulation expresses the Calca gene, which codes for the neuropeptide calcitonin gene-related peptide (CGRP). These PB neurons relay signals related to threatening stimuli such as hypercarbia, pain, and nausea, yet their inputs and their neurochemical identity are only partially understood.

View Article and Find Full Text PDF

Objectives: The objective of this study is to investigate lipopolysaccharid-binding protein (LBP), zonulin and calprotectin as markers of bacterial translocation, disturbed gut barrier and intestinal inflammation in patients with radiographic axial spondyloarthritis (r-axSpA) during tumour necrosis factor inhibitor (TNFi) therapy and to analyze the association between disease activity, response to treatment and biomarker levels.

Methods: Patients with active r-axSpA of the German Spondyloarthritis Inception Cohort starting TNFi were compared with controls with chronic back pain. Serum levels of LBP, zonulin and calprotectin were measured at baseline and after 1 year of TNFi therapy.

View Article and Find Full Text PDF

Rotaviruses, non-enveloped viruses with a double-stranded RNA genome, are the leading etiological pathogen of acute gastroenteritis in young children and animals. The P[11] genotype of rotaviruses exhibits a tropism for neonates. In the present study, a binding assay using synthetic oligosaccharides demonstrated that the VP8* protein of P[11] porcine rotavirus (PRV) strain 4555 binds to lacto-N-neotetraose (LNnT) with the sequence Galβ1,4-GlcNAcβ1,3-Galβ1,4-Glc, one of the core parts of histo-blood group antigen (HBGA) and milk glycans.

View Article and Find Full Text PDF

Developing intranasal vaccines against pandemics and devastating airborne infectious diseases is imperative. The superiority of intranasal vaccines over injectable systemic vaccines is evident, but developing effective intranasal vaccines presents significant challenges. Fusing a protein antigen with the catalytic domain of cholera toxin (CTA1) and the two-domain D of staphylococcal protein A (DD) has significant potential for intranasal vaccines.

View Article and Find Full Text PDF

Secretory diarrhea, a major global health concern, particularly among young children, is often characterized by excessive chloride secretion through the cystic fibrosis transmembrane conductance regulator (CFTR) channel. Nornidulin, a fungus-derived natural product from Aspergillus unguis, has previously been shown to inhibit cAMP-induced Cl- secretion in T84 cells (human intestinal cell lines). However, the cellular mechanism of nornidulin in inhibiting cAMP-induced Cl- secretion and its anti-secretory efficacy is still unknown especially in a human colonoid model, a preclinical model recapitulating intestinal physiology in humans.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!