The effect of arginine infusion on blood glucose and plasma levels of insulin, C-peptide and glucagon has been studied in leukemic children before and after treatment with L-asparaginase (10,000 U/m2/day for 10 days). Therapy induced a significant reduction in basal and peak blood glucose, insulin and C-peptide levels, while glucagon was unmodified. The conserved C-peptide-insulin molar ratio suggests the interference of L-asparaginase with proinsulin synthesis. In conclusion our results prove a decreased insulin reserve with a preserved, although reduced, beta-cell function.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000179462DOI Listing

Publication Analysis

Top Keywords

leukemic children
8
blood glucose
8
insulin c-peptide
8
pancreatic endocrine
4
endocrine function
4
function leukemic
4
children treated
4
treated l-asparaginase
4
l-asparaginase arginine
4
arginine infusion
4

Similar Publications

ETV6::RUNX1 is the most common fusion gene in childhood acute lymphoblastic leukemia (ALL) associated with favorable prognosis, but the optimal therapy for this subtype remains unclear. Profiling the genomic and pharmacological landscape of 194 pediatric ETV6::RUNX1 ALL cases, we uncover two transcriptomic clusters, C1 (61%) and C2 (39%). Compared to C1, the C2 subtype features higher white blood cell counts and younger age at diagnosis, as well as better early treatment responses.

View Article and Find Full Text PDF

Introduction: Corticosteroids are used for toxicity management, raising concerns about whether they may affect the anti-leukemic effects of chimeric antigen receptor (CAR)-T cells.

Methods And Results: In this study, we retrospectively analyzed patients (fined two subgroups based on disease burden. Of the 75 cases in the low disease burden (LDB) group (MRD < 5%, no extramedullary disease), there was no significant difference between the use of steroids and event-free survival (EFS) ( = 0.

View Article and Find Full Text PDF

Refractory disease and relapse are major challenges in acute myeloid leukemia (AML) therapy attributed to survival of leukemic stem cells (LSC). To target LSCs, antibody-drug conjugates (ADCs) provide an elegant solution, combining the specificity of antibodies with highly potent payloads. We aimed to investigate if FLT3-20D9h3-ADCs delivering either the DNA-alkylator duocarmycin (DUBA) or the microtubule-toxin monomethyl auristatin F (MMAF) can eradicate quiescent LSCs.

View Article and Find Full Text PDF

Identification of a novel TOP2B::AFF2 fusion gene in B-cell acute lymphoblastic leukemia.

Sci Rep

January 2025

Department of Hematology and Oncology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, No 136 Zhongshan 2 road, YuZhong district, Chongqing, 400014, China.

Genetic alterations play a pivotal role in leukemic clonal transformation, significantly influencing disease pathogenesis and clinical outcomes. Here, we report a novel fusion gene and investigate its pathogenic role in acute lymphoblastic leukemia (ALL). We engineer a transposon transfection system expressing the TOP2B::AFF2 transcript and introduce it into Ba/F3 cells.

View Article and Find Full Text PDF

Background: Proteolysis targeting chimeras (PROTACs) are heterobifunctional small molecules that utilize the ubiquitin-proteasome system to selectively degrade target proteins. This innovative technology has shown remarkable efficacy and specificity in degrading oncogenic proteins and has progressed through various stages of preclinical and clinical development for hematologic malignancies, including adult acute myeloid leukemia (AML). However, the application of PROTACs in pediatric AML remains largely unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!