The oxidation of organosulfur functional groups by the microsomal fraction of germinating pea seeds has been investigated. Arylsulfides , but not thioamides , were converted to sulfoxides by this hemoprotein in the presence of hydrogen peroxide.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0006-291x(84)90776-9DOI Listing

Publication Analysis

Top Keywords

oxidation organosulfur
8
microsomal fraction
8
fraction germinating
8
germinating pea
8
pea seeds
8
organosulfur compounds
4
compounds microsomal
4
seeds pisum
4
pisum sativum
4
sativum oxidation
4

Similar Publications

Late-onset Alzheimer's disease (LOAD) is a chronic, multifactorial, and progressive neurodegenerative disease that associates with aging and is highly prevalent in our older population (≥65 years of age). This hypothesis generating this narrative review will examine the important role for the use of sodium thiosulfate (STS) as a possible multi-targeting treatment option for LOAD. Sulfur is widely available in our environment and is responsible for forming organosulfur compounds that are known to be associated with a wide range of biological activities in the brain.

View Article and Find Full Text PDF

The Anti-AGEing and RAGEing Potential of Isothiocyanates.

Molecules

December 2024

Department of Surgery, School of Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA.

Isothiocyanates (ITCs), found in edible plants such as cruciferous vegetables, are a group of reactive organo-sulfur phytochemicals produced by the hydrolysis of precursors known as glucosinolates. ITCs have been studied extensively both in vivo and in vitro to define their therapeutic potential for the treatment of chronic health conditions. Therapeutically, they have shown an intrinsic ability to inhibit oxidative and inflammatory phenotypes to support enhanced health.

View Article and Find Full Text PDF

Considering the demand for organosulfur materials and the challenges associated with currently used oxidation processes, in this study, we evaluated the counter-cation of sodium chlorite (Na+ClO2-) with tetrabutylammonium chloride (Bu4N+Cl-) to synthesise tetrabutylammonium chlorite (Bu4N+ClO2-). Bu4N+ClO2- exhibited good solubility in organic solvents like chloroform (1.6 g mL-1) and ethyl acetate (0.

View Article and Find Full Text PDF

Chemical Fate of Particulate Sulfur from Nighttime Oxidation of Thiophene.

ACS EST Air

December 2024

Department of Environmental Sciences, University of California, Riverside, California 92521, United States.

Sulfur-containing volatile organic compounds emitted during wildfire events, such as dimethyl sulfide, are known to form secondary aerosols containing inorganic sulfate (SO ) and surfactant-like organic compounds; however, little is known about the fate of sulfur in other emitted reduced organosulfur species. This study aimed to determine the sulfurous product distribution resulting from the nighttime oxidation of thiophene as a model system. Ion chromatography (IC) and aerosol mass spectrometry (a mini aerosol mass spectrometer, mAMS) were used to constrain the proportions of sulfurous compounds produced under wildfire-relevant conditions ([NO]/[O] = 0.

View Article and Find Full Text PDF

Molecular Characterization of Organosulfur and Organonitrogen Compounds in Summer and Winter PM via UHPLC-Q-Orbitrap MS/MS.

Environ Sci Technol

December 2024

School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Tsinghua University, Beijing 100084, China.

Organosulfur and organonitrogen compounds (OrgSs and OrgNs) notably influence haze formation, reflecting the intricacies of sulfur and nitrogen chemistry in the atmospheric process. Despite this, a comprehensive understanding of OrgSs and OrgNs remains elusive. Here, we conducted molecular analyses of OrgSs and OrgNs in PM concurrently during three haze episodes in winter and summer from 2016 to 2019.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!