Substituted benzaldehydes have been designed to bind preferentially to the oxy conformation of human haemoglobin at a site between the amino terminal residues of the alpha-subunits. Such compounds should stabilize the oxygenated form of haemoglobin and thereby increase its oxygen affinity. The compounds produce the expected effect, left-shifting the oxygen saturation curve of dilute haemoglobin solutions and of whole blood, although the binding pattern to haemoglobin is more complex than envisaged by the design hypothesis. The predicted best compound is also a potent inhibitor, at low oxygen pressure, of the sickling of erythrocytes from patients homozygous for sickle cell disease, and may prove to be a clinically useful anti-sickling agent.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1987029PMC
http://dx.doi.org/10.1111/j.1476-5381.1984.tb10775.xDOI Listing

Publication Analysis

Top Keywords

substituted benzaldehydes
8
benzaldehydes designed
8
increase oxygen
8
oxygen affinity
8
human haemoglobin
8
haemoglobin
5
designed increase
4
oxygen
4
affinity human
4
haemoglobin inhibit
4

Similar Publications

Synthesis of Alkyl α-Amino-benzylphosphinates by the Aza-Pudovik Reaction; The Preparation of the Butyl Phenyl--phosphinate Starting P-Reagent.

Molecules

January 2025

Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary.

Butyl phenyl--phosphinate that is not available commercially was prepared from phenyl--phosphinic acid by three methods: by alkylating esterification (i), by microwave-assisted direct esterification (ii), and unexpectedly, by thermal esterification (iii). Considering the green aspects, selectivity and scalability, the thermal variation seemed to be optimal. However, there was need for prolonged heating.

View Article and Find Full Text PDF

Introduction: Quinazoline holds significant importance in pharmaceutical chemistry, which is included in a range of drugs, clinical contenders, and bioactive compounds. N-contain-ing heterocyclic compounds of quinazoline have a wide and distinct range of biopharmaceutical activities.

Methods: A series of newly synthesized heterocyclic compounds, namely, N-(4-substituted ben-zylidene)-2-(2-aminothiazol-4-yl)-6-methylquinazolin-3(4H)-amines (3a'-3e') and N-(4-substi-tuted benzylidene)-2-(2-aminooxazol-4-yl)-6-methylquinazolin-3(4H)-amines (3a-3e), were synthesized starting from 6-methylquinazolin-3(4H)-amine and 4-substituted benzaldehyde and their antibacterial and antifungal properties were evaluated.

View Article and Find Full Text PDF

Herein, a novel amine-functionalized magnetic resorcinol-formaldehyde with a core-shell structure (FeO@RF/Pr-NH) is prepared through the chemical immobilization of (3-aminopropyl)trimethoxysilane over FeO@RF composite. Characterization through FT-IR, EDX, PXRD, and TGA confirmed successful surface modification while preserving the crystalline structure of FeO. The VSM analysis demonstrated excellent superparamagnetic properties, and SEM and TEM images revealed spherical particles for the designed nanocatalyst.

View Article and Find Full Text PDF

The serine/threonine kinase CK2 (formerly known as casein kinase II) plays a crucial role in various CNS disorders and is highly expressed in various types of cancer. Therefore, inhibiting this key kinase could be promising for the treatment of these diseases. The CK2 holoenzyme is formed by the recruitment of two catalytically active CK2α and/or CK2α' subunits by a regulatory CK2β dimer.

View Article and Find Full Text PDF

Copper(I) complexes of isobutyl- () and isopropyl-substituted () proazaphosphatranes have been synthesized. Structural and computational studies of a series of monomeric complexes CuX (X = Cl, Br, I) and dimeric [CuCl] provide insight into the transannulation within and steric properties of the proazaphosphatrane ligand. These halide complexes are competent precatalysts in a model borylation reaction, and the silylamido complex CuN(TMS) catalyzes hydrosilylation of benzaldehyde under mild conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!