The binding of lipophilic radioligands to homogenized tissue was investigated with the help of a simple, two-component model: a specific component reflects binding to a single and uniform population of sites; a nonspecific component reflects partitioning into the membrane and the entrapment of some drug present in the aqueous phase prior to separation of the particulate fraction. The results indicate that the capacity and the affinity of the receptor may be underestimated when the data are analyzed in terms of total rather than free radioligand. Errors in capacity arise when for a significant fraction of the radioligand access to the receptor is blocked by an unlabelled drug and this appears as nonspecific binding. This is most likely to occur when the partition coefficient is such that the free radioligand is located predominantly in the particulate phase. Errors in affinity reflect the tendency of the membrane to reduce the free concentration of a lipophilic drug in the aqueous phase. A further complication arises when a significant fraction of the total radioligand binds to the receptor. [3H]Spiperone binds to dopamine D2 receptors with a dissociation constant of about 50 pM and partitions into the particulate phase of brain homogenates with a membrane/buffer partition coefficient of 410. As expected, both capacity and affinity can appear to depend on the concentration of tissue used in the assay. If the partition coefficient is known, corrected estimates of both parameters can be obtained knowing only the total concentration of radioligand; if the partition coefficient is not known, the free concentration of radioligand in the aqueous phase must be measured independently. The former procedure requires that the aqueous and particulate components of the system be separated by centrifugation; with filtration, the removal of an indeterminate amount of radioligand from the membrane during washing precludes any correction based on the partition coefficient. For the specific example of [3H]spiperone in human brain, the artifacts become negligible at concentrations of protein below 0.1 mg/ml of incubate. The capacity per unit of original tissue is best determined using unwashed preparations, since about 30% of the total protein and a comparable percentage of the receptors are lost on washing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1471-4159.1984.tb06700.x | DOI Listing |
Environ Pollut
January 2025
School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China. Electronic address:
The soils/sediments organic carbon sorption coefficient (K) of organic substances is one of the indispensable environmental behavioral parameters in chemicals management. Because the test procedure used to measure K is normally expensive and time-consuming, predictive methods are considered vitally important technology to fill the data gap of K. In this study, quantitative structure-property relationship (QSPR) models are developed using a data set with 1477 experimental logK values and seven typical machine learning algorithms.
View Article and Find Full Text PDFSci Adv
January 2025
Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China.
Intracranial optical imaging of glioblastoma (GBM) is challenging due to the scarcity of effective probes with blood-brain barrier (BBB) permeability and sufficient imaging depth. Herein, we describe a rational strategy for designing optical probes crossing the BBB based on an electron donor-π-acceptor system to adjust the lipid/water partition coefficient and molecular weight of probes. The amphiphilic hemicyanine dye (namely, IVTPO), which exhibits remarkable optical properties and effective BBB permeability, is chosen as an efficient fluorescence/photoacoustic probe for in vivo real-time imaging of orthotopic GBM with high resolution through the intact skull.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland.
Recent emphasis on the development of safe-and-sustainable-by-design chemicals highlights the need for methods facilitating the early assessment of persistence. Activated sludge experiments have been proposed as a time- and resource-efficient way to predict half-lives in simulation studies. Here, this persistence "read-across" approach was developed to be more broadly and robustly applicable.
View Article and Find Full Text PDFSoft Matter
January 2025
Department of Mathematics, National Institute of Technology Durgapur, Durgapur-713209, India.
The present article deals with the modulation of oscillatory electroosmotic flow (EOF) and solute dispersion across a nanochannel filled with an electrolyte solution surrounded by a layer of a dielectric liquid. The dielectric permittivity of the liquid layer adjacent to supporting rigid walls is taken to be lower than that of the electrolyte solution. Besides, the aforesaid liquid layer may bear additional mobile charges, , free lipid molecules, charged surfactant molecules , which in turn lead to a nonzero charge along the liquid-liquid interface.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Mathematical Sciences, Faculty of Science, Somali National University, Mogadishu Campus, Mogadishu, Somalia.
In recent years, machine learning has gained substantial attention for its ability to predict complex chemical and biological properties, including those of pharmaceutical compounds. This study proposes a machine learning-based quantitative structure-property relationship (QSPR) model for predicting the physicochemical properties of anti-arrhythmia drugs using topological descriptors. Anti-arrhythmic drug development is challenging due to the complex relationship between chemical structure and drug efficacy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!