Two epimer quinoline derivatives, PK 5078 and PK 7059, have been shown to be potent at releasing 5-HT from blood platelets. Moreover PK 5078 was also a potent and selective inhibitor of the uptake of 5-HT, being about 20 times as active as clomipramine. Both drugs, like p-chloroamphetamine, released 5-HT but did not inhibit MAO-A. Whilst p-chloroamphetamine seemed to be active on the cytoplasmic pool of 5-HT and reserpine on the vesicular pool, PK 5078 and PK 7059 were effective first on the vesicular pool and then on the cytoplasmic pool. The quinoline derivatives were devoid of the typical side-effects of amphetamine-like drugs, i.e. hyperactivity, anorexia and group toxicity. For these reasons PK 5078 and PK 7059 can be considered to be a new type of selective 5.HT-releasing drug.
Download full-text PDF |
Source |
---|
Background: There are no cures for Alzheimer's disease (AD), a progressive neurodegenerative disorder characterized by elevation of beta-amyloid and tau proteins besides neuronal death and causing cognitive impairment. Phosphodiesterase 5 (PDE5) is a cyclic guanosine monophosphate-degrading enzyme involved in numerous biological pathways including those relevant to memory formation. PDE5 inhibition offers the potential to attenuate AD progression by acting at the downstream level of beta-amyloid and tau elevation.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Department of Chemistry, Faculty of Science, Taibah University, Madinah 42353, Saudi Arabia.
Type 2 diabetes has become a significant global health challenge. Numerous drugs have been developed to treat the condition, either as standalone therapies or in combination when glycemic control cannot be achieved with a single medication. As existing treatments often come with limitations, there is an increasing focus on creating novel therapeutic agents that offer greater efficacy and fewer side effects to better address this widespread issue.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia.
Background: Recently, pyrido[2,3-] pyrimidine, triazolopyrimidine, thiazolopyrimidine, quinoline, and pyrazole derivatives have gained attention due to their diverse biological activities, including antimicrobial, antioxidant, antitubercular, antitumor, anti-inflammatory, and antiviral effects.
Objective: The synthesis of new heterocyclic compounds including 5-quinoline-pyrido[2,3-] pyrimidinone (-, , -), 6-quinoline-pyrido[2,3-]thiazolo[3,2-]pyrimidinone (, , -), 1,2,4-triazole-6-quinoline-pyrido[2,3-]thiazolo[3,2-]pyrimidinone (-), and pyrido[2,3-]thiazolo[3,2-]pyrimidine-ethyl-(pyridine)-9-thiaazabenzo[]azulenone () derivatives was performed with high yields while evaluating antimicrobial activities.
Methods: A new series of quinoline-pyrido[2,3-]thiazolo[3,2-]pyrimidine derivatives were prepared using a modern style and advanced technology, resulting in high yields of these new compounds.
Molecules
December 2024
Departamento de Química Orgánica I, Facultad de Farmacia and Centro de Investigación Lascaray (Lascaray Research Center), Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain.
The synthesis of phosphorous indenoquinolines and their biological evaluation as topoisomerase 1 (TOP1) inhibitors and antiproliferative agents were performed. First, the preparation of new hybrid 5-indeno[2,1-]quinolines with a phosphine oxide group was performed by a two-step Povarov-type [4+2]-cycloaddition reaction between the corresponding phosphorated aldimines with indene in the presence of BF·EtO. Subsequent oxidation of the methylene present in the structure resulted in the corresponding indeno[2,1-]quinolin-7-one phosphine oxides .
View Article and Find Full Text PDFMolecules
December 2024
Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000 Zagreb, Croatia.
As the resistance of to the existing antimalarials increases, there is a crucial need to expand the antimalarial drug pipeline. We recently identified potent antimalarial compounds, namely harmiquins, hybrids derived from the β-carboline alkaloid harmine and 4-amino-7-chloroquinoline, a key structural motif of chloroquine (CQ). To further explore the structure-activity relationship, we synthesised 13 novel hybrid compounds at the position -9 of the β-carboline ring and evaluated their efficacy in vitro against 3D7 and Dd2 strains (CQ sensitive and multi-drug resistant, respectively).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!