A new theory of control of somite segmentation in chick embryos is proposed. This supposses that tiny clusters of already programmed cells are present throughout the presumptive somite area at stage 4, but that in order to fulfill their destiny they probably depend on the addition of further cells from the primitive streak. Evidence is based on the two groups of experiments: a) Experiments involving transection across the primitive streak at various stages, (which results in a 'tail' which possesses mesodermal derivatives) and across the segmental plate (which results in a 'tail' lacking mesodermal derivatives). b) Experiments in which parts of embryos have been explanted with or without their primitive streak. It is suggested that the initial clusters of pre-programmed cells move further and further posteriorly, developing into somitomeres (the precursors of true somites) only as they receive re-inforcements from the primitive streak or, ultimately, from the tail bud.

Download full-text PDF

Source

Publication Analysis

Top Keywords

primitive streak
16
somite segmentation
8
mesodermal derivatives
8
experimental analysis
4
analysis control
4
control mechanisms
4
mechanisms somite
4
segmentation avian
4
avian embryos
4
embryos reduction
4

Similar Publications

Protocol for the generation of HLF+ HOXA+ human hematopoietic progenitor cells from pluripotent stem cells.

STAR Protoc

January 2025

Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA. Electronic address:

Hematopoietic stem cells (HSCs) generate blood and immune cells. Here, we present a protocol to differentiate human pluripotent stem cells (hPSCs) into hematopoietic progenitors that express the signature HSC transcription factors HLF, HOXA5, HOXA7, HOXA9, and HOXA10. hPSCs are dissociated, seeded, and then sequentially differentiated into posterior primitive streak, lateral mesoderm, artery endothelium, hemogenic endothelium, and hematopoietic progenitors through the sequential addition of defined, serum-free media.

View Article and Find Full Text PDF

In chick embryos before primitive streak formation, the outermost extra-embryonic region, known as the area opaca (AO), was generally thought to act only by providing nutrients and mechanical support to the embryo. Immediately internal to the AO is a ring of epiblast called the marginal zone (MZ), separating the former from the inner area pellucida (AP) epiblast. The MZ does not contribute cells to any part of the embryo but is involved in determining the position of primitive streak formation from the adjacent AP epiblast.

View Article and Find Full Text PDF

Sonic Hedgehog signaling regulates the optimal differentiation pace from early-stage mesoderm to cardiogenic mesoderm in mice.

Dev Growth Differ

January 2025

Division of Anatomy and Developmental Biology, Department of Anatomy, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.

Sonic Hedgehog (Shh), encoding an extracellular signaling molecule, is vital for heart development. Shh null mutants show congenital heart disease due to left-right asymmetry defects stemming from functional anomaly in the midline structure in mice. Shh signaling is also known to affect cardiomyocyte differentiation, endocardium development, and heart morphogenesis, particularly in second heart field (SHF) cardiac progenitor cells that contribute to the right ventricle, outflow tract, and parts of the atrium.

View Article and Find Full Text PDF

Protocol for efficient generation of human artery and vein endothelial cells from pluripotent stem cells.

STAR Protoc

December 2024

Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Urology, Stanford University, Stanford, CA 94305, USA. Electronic address:

Blood vessels permeate all organs and execute myriad roles in health and disease. Here, we present a protocol to efficiently generate human artery and vein endothelial cells (ECs) from pluripotent stem cells within 3-4 days of differentiation. We delineate how to seed human pluripotent stem cells and sequentially differentiate them into primitive streak, lateral mesoderm, and either artery or vein ECs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!