Quantitative studies of 125I-labeled reovirus binding at equilibrium to several cell types was studied, including (1) murine L cell fibroblasts; (2) murine splenic T lymphocytes; (3) YAC cells, a murine lymphoma cell line; and (4) R1.1 cells, a murine thymoma cell line. Competition and saturation studies demonstrated (1) specific, saturable, high-affinity binding of reovirus types 1 and 3 to nonidentical receptors on L cell fibroblasts; (2) high-affinity binding of type 3 reovirus to murine splenic lymphocytes and R1.1 cells; (3) low-affinity binding of reovirus type 1 to lymphocytes and R1.1 cells; and (4) no significant binding of either serotype to YAC cells. Differences in the binding characteristics of the two reovirus serotypes to L cell fibroblasts were found to be a property of the viral hemagglutinin, as demonstrated using a recombinant viral clone. The equilibrium dissociation constant (Kd) for viral binding was of extremely high affinity (Kd in the range of 0.5 nM), and was slowly reversible. Experiments demonstrated temperature and pH dependence of reovirus binding and receptor modification studies using pronase, neuraminidase, and various sugars confirmed previous studies that reovirus receptors are predominantly protein in structure. The reovirus receptor site density was in the range of 2-8 X 10(4) sites/cell. These studies demonstrate that the pseudo-first-order kinetic model for ligand-receptor interactions provides a useful model for studying interactions of viral particles with membrane viral receptors. They also suggest that one cell may have distinct receptor sites for two serotypes of the same virus, and that one viral serotype may bind with different kinetics depending on the cell type.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0042-6822(84)90424-0 | DOI Listing |
Heliyon
January 2025
Department of Oral Histology-Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea.
Our previous studies indicate that NFI-C is essential for tooth root development and endochondral ossification. However, its exact role in calvarial intramembranous bone formation remains unclear. In this study, we demonstrate that the disruption of the gene leads to defects in intramembranous bone formation, characterized by decreased osteogenic proliferative activity and reduced osteoblast differentiation during postnatal osteogenesis.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
Overproduction of reactive oxygen species (ROS), elevated synovial inflammation, synovial hyperplasia and fibrosis are the main characteristic of microenvironment in rheumatoid arthritis (RA). Macrophages and fibroblast-like synoviocytes (FLSs) play crucial roles in the progression of RA. Hence, synergistic combination of ROS scavenging, macrophage polarization from pro-inflammatory M1 phenotype towards M2 anti-inflammatory phenotype, and restoring homeostasis of FLSs will provide a promising therapeutic strategy for RA.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Hohhot, 010018, China.
Wound healing is a highly coordinated process driven by intricate molecular signaling and dynamic interactions between diverse cell types. Nod-like receptor pyrin domain-containing protein 3 (NLRP3) has been implicated in the regulation of inflammation and tissue repair; however, its specific role in skin wound healing remains unclear. This study highlights the pivotal role of NLRP3 in effective skin wound healing, as demonstrated by delayed wound closure and altered cellular and molecular responses in NLRP3-deficient (NLRP3) mice.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China.
Hypertrophic scar (HS) is a common fibroproliferative disorders with no fully effective treatments. The conversion of fibroblasts to myofibroblasts is known to play a critical role in HS formation, making it essential to identify molecules that promote myofibroblast dedifferentiation and to elucidate their underlying mechanisms. In this study, we used comparative transcriptomics and single-cell sequencing to identify key molecules and pathways that mediate fibrosis and myofibroblast transdifferentiation.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Department of Interventional Radiology, Key Laboratory of Interventional Radiology of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China.
Excessive vascularization during tracheal in-stent restenosis (TISR) is a significant but frequently overlooked issue. We developed an anti-inflammatory coupled anti-angiogenic airway stent (PAGL) incorporating anlotinib hydrochloride and silver nanoparticles using advanced electrospinning technology. PAGL exhibited hydrophobic surface properties, exceptional mechanical strength, and appropriate drug-release kinetics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!