The protective effect of dicarboxylates on the active-site-directed inhibition of the membrane-bound succinate dehydrogenase by N-ethylmaleimide, steady-state kinetics methods for Ki and Ks determinations, and equilibrium studies were employed to quantitate the relative affinities of succinate, fumarate, malonate and oxaloacetate to the reduced and oxidized species of the enzyme. A more than 10-fold difference in the relative affinities of the reduced and oxidized succinate dehydrogenase to succinate, fumarate and oxaloacetate is found, whereas the reactivity of the active-site sulphydryl group does not depend on the redox state of the enzyme. The redox-state-dependent changes in the affinity of the membrane-bound succinate dehydrogenase to oxaloacetate can be quantitatively accounted for by a 10-fold increase in the rate of dissociation of the enzyme-inhibitor complex which occurs upon reduction of the enzyme. The data obtained give no support for either the existence of a sulphydryl group other than the active-site one important for the catalysis or for the presence of a separate dicarboxylate-specific regulatory site in the succinate dehydrogenase molecule.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0167-4838(84)90168-7DOI Listing

Publication Analysis

Top Keywords

succinate dehydrogenase
20
membrane-bound succinate
12
relative affinities
8
succinate fumarate
8
reduced oxidized
8
sulphydryl group
8
succinate
7
dehydrogenase
5
interaction membrane-bound
4
dehydrogenase substrate
4

Similar Publications

Polystyrene microplastics exhibit toxic effects on the widespread coral symbiotic Cladocopium goreaui.

Environ Res

January 2025

Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China.

Within the coral reef habitat, members of the Symbiodiniaceae family stand as pivotal symbionts for reef-building corals. However, the physiological response of Symbiodiniaceae on microplastics are still poorly understood. Research conducted in this investigation assessed the harmful impact of polystyrene microparticles (PS-MPs) on Cladocopium goreaui, a Symbiodiniaceae species with a broad distribution.

View Article and Find Full Text PDF

During aerobic growth, relies on acetate overflow metabolism, a process where glucose is incompletely oxidized to acetate, for its bioenergetic needs. Acetate is not immediately captured as a carbon source and is excreted as waste by cells. The underlying factors governing acetate overflow in have not been identified.

View Article and Find Full Text PDF

Durable and deep response to CVD chemotherapy in SDHB-mutated metastatic paraganglioma: case report.

Front Endocrinol (Lausanne)

January 2025

Division of Abdominal Tumor, Department of Medical Oncology, Cancer Center and State Key Laboratory of Biological Therapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.

Introduction: Succinate dehydrogenase subunit B (SDHB)-mutated paragangliomas (PGLs) are rare neuroendocrine tumors characterized by increased malignancy, readily metastasizing, and poorer prognosis. Here we report a case of SDHB-mutated metastatic PGL, wherein the patient showed significant tumor shrinkage and complete symptom remission following chemotherapy. We aim to contribute additional evidence to the existing knowledge associated with SDHB-mutated PGLs.

View Article and Find Full Text PDF

The resistance mechanism of B_P225F and B_H272R mutations in succinate dehydrogenase in Botrytis cinerea.

Int J Biol Macromol

December 2024

State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China. Electronic address:

Botrytis cinerea populations resistant to succinate dehydrogenase inhibitors (SDHIs) represent a major problem for the sustainable development of modern agriculture. In the present study, the resistance mechanism of B_P225F and B_H272R mutations in B. cinerea SDH (BcSDH) resistant to SDHIs fungicides, including boscalid (BOS), penflufen (PEN), pydiflumetofen (PYD), fluopyram (FLU), and benzovindiflupyr (BEN), was uncovered.

View Article and Find Full Text PDF

In Pursuit of Lead Innovation: Pharmaceutically Important and Distinct Amide-Free Succinate Dehydrogenase Inhibitors.

J Med Chem

January 2025

State Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.

Though succinate dehydrogenase inhibitors (SDHIs) are quite successful in the modern agrochemical industry, the Fungicide Resistance Action Committee has classified the resistance risk as "medium to high". Structural analysis reveals that these antifungal chemotypes are highly conserved with amides as a consistent feature. This chemical factor may be a potential factor for the ever-increasing resistance risk.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!