Synaptosomal plasma membranes from mice treated chronically with ethanol were incubated with galactose oxidase and [3H]-sodium borohydride, in order to label the exposed galactose and N-acetylgalactosamine groups of glycoconjugates. The ethanol treatment approximately doubled the amount of exposed sugars. This change may be related to previously observed alterations in the physical properties of neuronal membranes in ethanol-treated mice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2044782 | PMC |
http://dx.doi.org/10.1111/j.1476-5381.1983.tb09356.x | DOI Listing |
Dev Cell
January 2025
State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100093, China. Electronic address:
Lactate has emerged as a central metabolic fuel and an important signaling molecule. Its availability participates in various brain functions. Although lactate homeostasis is vital for adult hippocampal neurogenesis and cognition, it is still unknown how shuttles lactate across the plasma membrane of neural stem cells (NSCs) to control their activity and neurogenic potential.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2024
Department of Plastic and Cosmetic Surgery, The Second Affiliated Hospital of Army Medical University, Chongqing 400038, China. Electronic address:
The chronic diabetic wounds represented by diabetes foot ulcers (DFUs) are a worldwide challenge. Excessive production of reactive oxygen species (ROS) and persistent inflammation caused by the impaired phenotype switch of macrophages from M1 to M2 during wound healing are the main culprits of non-healing diabetic wounds. Therefore, an injectable DMM/GelMA hydrogel as a promising wound dressing was designed to regulate the mitochondrial metabolism of macrophages via inhibiting succinate dehydrogenase (SDH) activity and to promote macrophage repolarization towards M2 type.
View Article and Find Full Text PDFNanomedicine (Lond)
January 2025
Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA.
Aim: To develop pH (pHe)-triggered membrane adhesive nanoliposome (pHTANL) of CD40a to enhance anti-tumor activity in pancreatic cancer while reducing systemic toxicity.
Materials And Methods: A small library of nanoliposomes (NL) with various lipid compositions were synthesized to prepare pH (pHe)-triggered membrane adhesive nanoliposome (pHTANL). Physical and functional characterization of pHTANL-CD40a was performed via dynamic light scattering (DLS), Transmission Electron Microscopy (TEM), confocal microscopy, and flow cytometry.
Circ Res
January 2025
Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China (X.H., J.Z., C.X., R.C., P.J., X.J., P.H.).
Background: Cardiac ischemia/reperfusion disrupts plasma membrane integrity and induces various types of programmed cell death. The ESCRT (endosomal sorting complex required for transport) proteins, particularly AAA-ATPase Vps4a (vacuolar protein sorting 4a), play an essential role in the surveillance of membrane integrity. However, the role of ESCRT proteins in the context of cardiac injury remains unclear.
View Article and Find Full Text PDFMechanical force orchestrates a myriad of cellular events including inhibition of axon regeneration, by locally activating the mechanosensitive ion channel Piezo enriched at the injured axon tip. However, the cellular mechanics underlying Piezo localization and function remains poorly characterized. We show that the RNA repair/splicing enzyme Rtca acts upstream of Piezo to modulate its expression and transport/targeting to the plasma membrane via Rab10 GTPase, whose expression also relies on Rtca.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!