Download full-text PDF

Source

Publication Analysis

Top Keywords

[influence estradiol
4
estradiol vascular
4
vascular myocardial
4
myocardial lesions
4
lesions castrated
4
castrated female
4
female rats]
4
[influence
1
vascular
1
myocardial
1

Similar Publications

Purpose: This study aimed to evaluate the effectiveness of single versus group culture strategies for cumulus-oocyte complexes (COCs) derived from early antral follicles (EAFs), with the goal of optimizing culture conditions to increase oocyte availability for assisted reproductive technologies.

Methods: COCs isolated from EAFs (350-450 µm) from sheep ovaries were cultured in TCM199 medium supplemented with 0.15 µg/mL Zn as zinc sulfate, 10 IU/mL FSH, 10 ng/mL estradiol, 50 ng/mL testosterone, 50 ng/mL progesterone, and 5 µM Cilostamide.

View Article and Find Full Text PDF

Effect of estrogen on myocardial ischemia-reperfusion injury in male and female rats and related mechanism.

Steroids

January 2025

Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China. Electronic address:

Due to the difference of estrogen levels in different phases of estrous cycle, it is necessary to exclude the influence of endogenous estrogen when studying the cardiovascular effects of estrogen and its analogues. In this study, the ischemia/reperfusion (I/R) injury of isolated heart were investigated in female rats during different phases of estrous cycle with male rats as comparison. The results indicated that the estrogen content in blood of rats during metestrus and diestrus (MD) was lower than those during proestrus and estrous (PE).

View Article and Find Full Text PDF

LYVE1 and IL1RL1 are mitochondrial permeability transition-driven necrosis-related genes in heart failure.

Int J Biochem Cell Biol

January 2025

Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, China; Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, China. Electronic address:

Background: Heart failure is linked to increased hospitalization and mortality. Mitochondrial permeability transition-driven necrosis is associated with cardiovascular diseases, but its role in heart failure is unclear. This study aimed to identify and validate genes related to mitochondrial permeability transition-driven necrosis in heart failure, potentially leading to new drug targets and signaling pathways.

View Article and Find Full Text PDF

Objectives: Human papillomavirus (HPV) is the leading cause of cervical cancer, with adolescent girls and young women (AGYW) in sub-Saharan Africa carrying a disproportionately high burden of infection. Hormonal contraceptives may influence HPV acquisition, persistence, and clearance, but evidence remains inconclusive. This sub-study aimed to evaluate the impact of different hormonal contraceptives on HPV prevalence and genotype distribution in AGYW.

View Article and Find Full Text PDF

Association of pentachlorophenol in urine and follicular fluid with ovarian reserve and reproductive outcomes among women undergoing in vitro fertilization based on a prospective cohort study.

Environ Res

January 2025

Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, School of Public Health, Guilin Medical University, Guilin, 541199, PR China. Electronic address:

Pentachlorophenol (PCP), a persistent organic pollutant, has endocrine disrupting properties and there may be a link between its exposure and reproductive outcomes. In this study, we assessed the relationship of PCP exposure levels with ovarian reserve markers and reproductive health outcomes in women (N = 656) undergoing in vitro fertilization (IVF). PCP concentrations were determined in urine (n = 1,968; repeated measures) and follicular fluid samples (n = 603).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!