The pharmacokinetics of methotrexate (MTX) and 7-hydroxy-methotrexate (7-OH-MTX), a major metabolite, were investigated in rabbits after intravenous bolus injection and infusion using a specific HPLC assay. The arterial sampling (from the carotid artery) was used in all the studies since peculiar and significant arterial-venous differences in the plasma concentration of MTX and 7-OH-MTX were found following bolus administration of the drug. The disposition kinetics of MTX appeared polyexponential with a small terminal phase having a half-life of 10.2-27.5 hr. Extensive formation of 7-OH-MTX occurred at the two dose levels (15 and 50 mg/kg). Nonlinear disposition of MTX was reflected in several aspects of data analysis. A disproportionate increase in the AUC with dose was observed. An increase in dose not only reduced the mean total body clearance (7.49 vs. 4.26 ml/min/kg) and renal clearance (4.89 vs. 2.76 ml/min/kg), but also prolonged the mean residence time (26.2 vs. 43.3 min). The steady-state volume of distribution (Vss) of MTX was estimated to range from 0.16 to 0.25 L/kg. More than 90% of the dose was excreted as MTX and 7-OH-MTX within 8 hr after dosing. Renal clearances decreased with the increasing plasma levels, suggesting active tubular secretion as one of the excretion mechanisms. A similar pattern for renal clearance of 7-OH-MTX was obtained. Infusion studies of 7-OH-MTX revealed that this metabolite had a longer residence time and a larger Vss as compared with MTX, which were in accordance with its physicochemical properties. Essentially complete doses of 7-OH-MTX could be recovered in the rabbit urine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF01062208 | DOI Listing |
ACS Biomater Sci Eng
January 2025
Nano 2 Micro Material Design Lab, Department of Chemical Engineering and Technology, IIT (BHU), Varanasi 221005, India.
Herein, fluorescent calcium carbonate nanoclusters encapsulated with methotrexate (Mtx) and surface functionalized with chitosan (25 nm) (@Calmat) have been developed for the imaging and treatment of triple-negative breast cancer (TNBC). These biocompatible, pH-sensitive nanoparticles demonstrate significant potential for targeted therapy and diagnostic applications. The efficacy of nanoparticles (NPs) was evaluated in MDA-MB-231 TNBC cell lines.
View Article and Find Full Text PDFAnn Rheum Dis
January 2025
Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan. Electronic address:
Objectives: The usefulness of methotrexate-polyglutamates (MTX-PGs) concentration for management of rheumatoid arthritis has been debated. We aimed to clarify the association of MTX-PGs concentration with efficacy and safety in MTX-naïve patients initiating MTX in a prospective interventional clinical trial.
Methods: The MIRACLE trial enrolled 300 MTX-naïve patients.
Dokl Biochem Biophys
January 2025
Ryazan State Medical University, Ryazan, Russian Federation.
Introduction: Breast cancer resistance protein (BCRP) is an efflux membrane transporter that controls the pharmacokinetics of a large number of drugs. Its activity may change when taking some endo- and exogenous substances, thus making it a link in drug interactions.
Aim: The aim of the study was to develop a methodology for testing drugs for belonging to BCRP substrates and inhibitors in vitro.
Clin Rheumatol
January 2025
Department of Public Health, University of Murcia, Campus de Ciencias de la Salud, Murcia, 30120, Spain.
Introduction: Therapeutic drug monitoring (TDM) in inflammatory rheumatic diseases (RMDs) is gaining interest. However, there are unresolved questions about the best practices for implementing TDM effectively in clinical settings.
Objective: The primary objective of this study was to evaluate whether early TDM of adalimumab predicts drug survival at 52 weeks in patients with RMDs.
Sci Rep
January 2025
Physics Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
This study aims to synthesize a new localized drug delivery system of bioglass, polyvinyl alcohol (PVA), cellulose (CNC), and sodium alginate (SA) beads as a carrier for methotrexate (MTX) drugs for the treatment of osteosarcoma. Methotrexate /Bioglass-loaded Polyvinyl/Cellulose/Sodium alginate biocomposite beads were prepared via the dropwise method with different concentrations of (65%SiO-30%CaO- 5%PO) bioglass. Samples were named B0, S0, S1, S2, and S3, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!