Cultured neurones from the cockroach, Periplaneta americana, have been used to investigate putative acetylcholine receptors. Ligand-binding experiments revealed that these neurones possessed an alpha-bungarotoxin binding site that was saturable, had an apparent affinity constant of 3.51 nM and was predominantly nicotinic in nature. An individual culture of 50,000 neurones had a maximum of 4200 pmol. binding sites per gram of protein. [I125]alpha-BTX autoradiography showed the binding sites to be distributed over both the neuronal cell bodies and their associated axonal processes. Both acetylcholine and nicotine applied by pressure ejection to the neuronal soma induced depolarizing responses and in the majority of cells tested the response was blocked by alpha-BTX at a concentration of 25 nM in a time dependent manner. Some of the neurones, however, were depolarized by acetylcholine and nicotine after 3 h incubation in alpha-BTX. These experiments suggest that two populations of cells possessing extrajunctional nicotinic receptors were present in these cultures. In the majority of cells these receptors were sensitive to alpha-BTX but in a subpopulation the receptors were unaffected by this toxin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0006-8993(83)90080-x | DOI Listing |
Bio Protoc
January 2025
Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
Primary neuronal culture and transient transfection offer a pair of crucial tools for neuroscience research, providing a controlled environment to study the behavior, function, and interactions of neurons in vitro. These cultures can be used to investigate fundamental aspects of neuronal development and plasticity, as well as disease mechanisms. There are numerous methods of transient transfection, such as electroporation, calcium phosphate precipitation, or cationic lipid transfection.
View Article and Find Full Text PDFEpilepsia
January 2025
Atalanta Therapeutics, Boston, Massachusetts, USA.
Objective: Gain-of-function variants in the KCNT1 gene, which encodes a sodium-activated potassium ion channel, drive severe early onset developmental epileptic encephalopathies including epilepsy of infancy with migrating focal seizures and sleep-related hypermotor epilepsy. No therapy provides more than sporadic or incremental improvement. Here, we report suppression of seizures in a genetic mouse model of KCNT1 epilepsy by reducing Kcnt1 transcript with divalent small interfering RNA (siRNA), an emerging variant of oligonucleotide technology developed for the central nervous system.
View Article and Find Full Text PDFJ Neurochem
January 2025
Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
The guidance cue netrin-1 promotes both growth cone attraction and growth cone repulsion. How netrin-1 elicits diverse axonal responses, beyond engaging the netrin receptor DCC and UNC5 family members, remains elusive. Here, we demonstrate that murine netrin-1 induces biphasic axonal responses in cortical neurons: Attraction at lower concentrations and repulsion at higher concentrations using both a microfluidic-based netrin-1 gradient and bath application of netrin-1.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, 151401, India.
Background: Multiple sclerosis (MS) is a chronic autoimmune condition that damages the myelin sheath of neurons in the central nervous system, resulting in compromised nerve transmission and motor impairment. The astrocytopathy is considered one of the prominent etiological factor in the pathophysiology of demyelination in MS. The expression level of ceramide synthase-2 (CS-2) is yet to be established in the pathophysiology of astrocytopathy although the derailed ceramide biosynthetic pathways is well demonstrated in the pathophysiology of demyelination.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!