The relationship between cholesterol and ubiquinone synthesis in rat intestinal epithelial cell cultures was examined by using 3 beta-[2-(diethylamino)ethoxy]androst-5-en-17-one hydrochloride (U18666A). Addition of U18666A to cells caused a greater than 90% inhibition of incorporation of [3H]acetate into cholesterol and an apparent large increase in the incorporation of [3H]acetate and [3H]mevalonate into ubiquinone. However, the incorporation of 4-hydroxy[U-14C]benzoate, a ring precursor of ubiquinone, was unchanged. The apparent increase of 3H incorporation into ubiquinone was found to be due to the formation of a contaminant that has been identified as squalene 2,3:22,23-dioxide. Following incubation of cells with U18666A, its removal from the medium resulted in a decrease in squalene 2,3:22,23-dioxide labeling and a corresponding increase in the polar sterol fraction. These results demonstrate that U18666A inhibits the reaction catalyzed by 2,3-oxidosqualene cyclase (EC 5.4.99.7). As a result, the isoprenoid precursors are diverted not to ubiquinone as has been suggested but to squalene 2,3:22,23-dioxide, a metabolite not on the cholesterol biosynthetic pathway. Removal of the drug allows cyclization of squalene 2,3:22,23-dioxide, leading to formation of compounds with chromatographic properties of polar sterols.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi00294a001DOI Listing

Publication Analysis

Top Keywords

squalene 232223-dioxide
16
cholesterol ubiquinone
8
rat intestinal
8
intestinal epithelial
8
epithelial cell
8
cell cultures
8
incorporation [3h]acetate
8
increase incorporation
8
ubiquinone
6
effects beta-[2-diethylaminoethoxy]androst-5-en-17-one
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!