Several dopamine (DA) receptor agonists, notably N,N-dipropyl-2-aminotetralin analogues differing in the number and position of phenolic hydroxyl groups, were evaluated in model systems for pre- and postsynaptic dopaminergic activity. Apomorphine, piribedil and pergolide were included for comparison. All compounds inhibited the gamma-butyrolactone (GBL)-induced increase in DA concentrations in the rat striatum and olfactory tubercle, although a dose-dependency could not be demonstrated for one of the compounds, i.e. N,N-dipropyl-2-amino-5,6-dihydroxy-tetralin. In addition to the reversal of the DA-increase all compounds decreased the HVA and DOPAC levels in a dose-dependent manner, in much the same way as in normal, non GBL-pretreated rats. The potencies of the drugs to decrease HVA in normal rats and to inhibit the DA-increase and to decrease HVA in GBL-pretreated rats, both in the striatum and the olfactory tubercle were compared with each other and with the potencies to induce stereotyped behaviour. It may be concluded that (1) N,N-dipropyl-2-amino-7-hydroxytetralin shows the largest difference in activity in the biochemical and the behavioural models, suggesting a selective presynaptic activity. This was corroborated by the appearance of a marked hypomotility after low doses of this compound; (2) The potencies to decrease striatal HVA concentrations are generally somewhat different from the potencies to inhibit GBL-induced DA-increases, but appear to be comparable to the potencies to inhibit GBL-induced dihydroxyphenylalanine (DOPA)-increases; (3) There is no indication that the DA agonists in general are more potent at presynaptic receptors in the tubercle than in the striatum.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF00497015 | DOI Listing |
Neuroscience
January 2025
School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an, China; State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an, China; National Demonstration Center for Experimental Mechanics Education, Xi'an Jiaotong University, Xi'an, China. Electronic address:
Schizophrenia (SCHZ), bipolar disorder (BD), and attention-deficit/hyperactivity disorder (ADHD) share clinical symptoms and risk genes, but the shared and distinct neural dynamic mechanisms remain inadequately understood. Degree is a fundamental and important graph measure in network neuroscience, and we here extended the degree to hierarchical levels based on eigenmodes and compared the resting-state brain networks of three disorders and healthy controls (HC). First, compared to HC, SCHZ and BD patients exhibited substantially overlapped abnormalities in brain networks, wherein BD patients displayed more significant alterations.
View Article and Find Full Text PDFBiomater Adv
December 2024
Department of Biomedical Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, USA; Translational Tissue Engineering Center, Whiting School of Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA. Electronic address:
This study defines biochemical mechanisms that contribute to novel neural-regenerative activities we recently demonstrated for thiol-modified ManNAc analogs in human neural stem cells (hNSCs) by comparing our lead drug candidate for brain repair, "TProp," to a "size-matched" N-alkyl control analog, "But." These analogs biosynthetically install non-natural sialic acids into cell surface glycans, altering cell surface receptor activity and adhesive properties of cells. In this study, TProp modulated sialic acid-related biology in hNSCs to promote neuronal differentiation through modulation of cell adhesion molecules (integrins α6, β1, E-cadherin, and PSGL-1) and stem cell markers.
View Article and Find Full Text PDFCurr Pharm Des
January 2025
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey.
Background: Psychosis, marked by detachment from reality, includes symptoms like hallucinations and delusions. Traditional herbal remedies like kratom are gaining attention for psychiatric conditions. This was aimed at comprehending the molecular mechanisms of Kratom's antipsychotic effects utilizing a multi-modal computational approach.
View Article and Find Full Text PDFJ Psychopharmacol
January 2025
Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
Background: Delirium is a severe neuropsychiatric disorder associated with increased morbidity and mortality. Numerous precipitating factors and etiologies merge into the pathophysiology of this condition which can be marked by agitation and psychosis. Judicious use of antipsychotic medications such as intravenous haloperidol reduces these symptoms and distress in critically ill individuals.
View Article and Find Full Text PDFJ Psychiatry Neurosci
January 2025
From the Computational Biology Centre and the Laboratory of Psychiatric-Neuroimaging-Genetic and Comorbidity, Tianjin Anding Hospital, Tianjin Mental Health Centre of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China.
Background: Clozapine is superior to all other antipsychotics in treating schizophrenia in terms of its curative efficacy; however, this drug is prescribed only as a last resort in the treatment of schizophrenia, given its potential to induce cardiac arrest. The mechanism of clozapine-induced cardiac arrest remains unclear, so we aimed to elucidate the potential mechanisms of clozapine-induced cardiac arrest using network pharmacology and molecular docking.
Methods: We identified and analyzed the overlap between potential cardiac arrest-related target genes and clozapine target genes.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!