In order to quantitate possible time-related changes in the viability of rat hypothalamic tissue slices, tissue oxygen consumption was measured after incubation periods ranging from 0-4 hours. There were no significant differences in mean tissue oxygen consumption between the various incubation periods; nor was there any trend indicating that oxygen consumption gradually decreases over time. Moreover, no regional differences were observed among the various rostral hypothalamic slices. One obvious trend, however, was that during the first two hours of each experiment, tissue oxygen consumption decreased briefly and then returned to normal higher levels. The exact occurrence of this transitory decrease varied from experiment to experiment; but the subsequent recovery in oxygen consumption was always complete by two hours of incubation. This initial transient decrease in tissue oxygen consumption may reflect the initial period of electrophysiological inactivity reported in several in vitro studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0361-9230(83)90172-7 | DOI Listing |
J Transl Med
January 2025
Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
Background: Drug resistance constitutes one of the principal causes of poor prognosis in breast cancer patients. Although cancer cells can maintain viability independently of mitochondrial energy metabolism, they remain reliant on mitochondrial functions for the synthesis of new DNA strands. This dependency underscores a potential link between mitochondrial energy metabolism and drug resistance.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Shandong Key Laboratory of Proteins and Peptides Pharmaceutical Engineering, Shandong Universities Key Laboratory of Biological Medicine, School of Life Science and Technology, Shandong Second Medical University, 7166 # Baotong West Street, Weifang, Shandong, 261053, People's Republic of China.
Background: Diabetic foot ulcers (DFU) are severe complications of diabetes, posing significant health and societal challenges. Accumulation of reactive oxygen species (ROS) and elevated glucose levels are primary factors affecting diabetic wound healing. Achieving effective treatment by reducing ROS alone is challenging, as high glucose levels continuously drive ROS production.
View Article and Find Full Text PDFClin Oral Investig
January 2025
Unit of Periodontology, University College London, Eastman Dental Institute, London, UK.
Objectives: Oral and periodontal health have been linked to systemic health, cardiovascular disease and inflammation markers. Physical fitness has been linked to increased inflammatory response, but only few studies have investigated the association between oral health with physical activity. The aim of this study was to evaluate the association between oral and periodontal health status and physical fitness in British law enforcement workers.
View Article and Find Full Text PDFDrug Metab Dispos
January 2025
Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Science Center, New Orleans, Louisiana; The Stanley S. Scott Cancer Center, Louisiana State University Health Science Center, New Orleans, Louisiana. Electronic address:
Environmentally persistent free radicals (EPFRs) are a recently recognized component of particulate matter that cause respiratory and cardiovascular toxicity. The mechanism of EPFR toxicity appears to be related to their ability to generate reactive oxygen species (ROS), causing oxidative damage. EPFRs were shown to affect cytochrome P450 (P450) function, inducing the expression of some forms through the Ah receptor.
View Article and Find Full Text PDFPLoS Biol
January 2025
School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America.
Oxygen availability is a key factor in the evolution of multicellularity, as larger and more sophisticated organisms often require mechanisms allowing efficient oxygen delivery to their tissues. One such mechanism is the presence of oxygen-binding proteins, such as globins and hemerythrins, which arose in the ancestor of bilaterian animals. Despite their importance, the precise mechanisms by which oxygen-binding proteins influenced the early stages of multicellular evolution under varying environmental oxygen levels are not yet clear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!