Divalent cation-induced fusion of large unilamellar vesicles (approx. 0.1 micron diameter) made of phosphatidylserine (PS) or phosphatidylglycerol (PG) has been studied. Intermixing of aqueous contents during fusion was followed by the Tb/dipicolinic acid fluorescence assay, and intermixing of membrane components by resonance energy transfer between fluorescent lipid probes. Both assays gave identical threshold concentrations for Ca2+, which were 2 mM for PS and 15 mM for PG. The dependencies of the initial rate of fusion on the concentration of PG vesicles determined by either assay were identical, the order of this dependence being 1.2 in the concentration range of 5-200 microM lipid. For PS liposomes, this order was found to be 1.5 in the fluorescent lipid assay. No leakage of contents was detected during the fusion of PG vesicles. Mg2+ inhibited the Ca2+-induced fusion of PS vesicles, but did not cause any fusion by itself, consistent with previous results with the Tb/dipicolinic acid assay.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0005-2736(83)90272-9 | DOI Listing |
Int J Biol Macromol
December 2024
Department of Agricultural Engineering, College of Engineering, China Agricultural University, Beijing 100083, China.
This study aims to explore the redispersibility of dehydrated nanocellulose with p-toluenesulfonic acid (p-TsOH) fractionated lignin as an eco-friendly and cost-effective capping agent, to cope with the challenge of irreversible agglomeration and thus loss of nanoscale of nanocellulose upon dehydration. The intermixing of nanocellulose and p-TsOH fractionated lignin was achieved using an aqueous ethanol solution as the medium and films of lignin-blending cellulose nanofibers (L + CNF) with excellent redispersing properties were obtained after facile air-drying. With 0.
View Article and Find Full Text PDFJ Colloid Interface Sci
October 2023
Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark. Electronic address:
The interaction between inhaled drug-loaded nanoparticles and pulmonary surfactant (PS) is critical for the efficacy and safety of inhaled nanomedicines. Here, we investigated the effect of small interfering RNA (siRNA)-loaded lipid-polymer hybrid nanoparticles (LPNs), which are designed for treatment of lung inflammation, on the physiological function of PS. By using biophysical in vitro methods we show that siRNA-loaded LPNs affect the biophysical function and lateral structure of PS.
View Article and Find Full Text PDFLangmuir
October 2021
Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
Integration of molecular liquid crystals (LCs) with functional proteins can provide new class of materials for potential applications in optical biosensing. However, hydrophobic nematic LCs (length ∼ 1-2 nm) and hydrophilic proteins, size ∼ (nm), do not intermix without chemical modification of at least one of them. Bioconjugation of proteins with a polyethylene glycol-based polymeric surfactant (PS) can provide a core-shell system that is sequestered within nonaqueous LC (4-cyano-4'-pentylbiphenyl) microdroplets.
View Article and Find Full Text PDFNanomaterials (Basel)
June 2021
Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, 28040 Madrid, Spain.
Polyhydroxyalkanoates (PHA) are polyesters produced intracellularly by many bacterial species as energy storage materials, which are used in biomedical applications, including drug delivery systems, due to their biocompatibility and biodegradability. In this study, we evaluated the potential application of this nanomaterial as a basis of inhaled drug delivery systems. To that end, we assessed the possible interaction between PHA nanoparticles (NPs) and pulmonary surfactant using dynamic light scattering, Langmuir balances, and epifluorescence microscopy.
View Article and Find Full Text PDFChemSusChem
February 2019
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
The electrochemical (de)intercalation reactions of lithium ions are initiated at the electrode surface in contact with an electrolyte solution. Therefore, substantial structural degradation, which shortens the cycle life of cells, is frequently observed at the surface of cathode particles, including lithium-metal intermixing, phase transitions, and dissolution of lithium and transition metals into the electrolyte. Furthermore, in contrast to the strict restriction of moisture in lithium-ion cells with nonaqueous organic electrolytes, electrode materials in aqueous-electrolyte cells are under much more reactive environments with water and oxygen, thereby leading to serious surface chemical reactions on the cathode particles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!