The effect of adenosine protonation on complex formation between poly(U) and adenosine has been studied by UV spectroscopy, titration and equilibrium dialysis techniques. A method has been developed to estimate the "misincorporation" of ionized monomer molecules into a polynucleotide--monomer complex. The method is based on combining the titration and binding data. Using this method it is shown that protonated adenosine interacts to some extent with poly(U) in the course of A.2 poly(U) dissociation at acidic pH. Qualitative differences between the effects of ionization of the polymer and monomer components on polynucleotide--monomer interaction are discussed.

Download full-text PDF

Source

Publication Analysis

Top Keywords

adenosine protonation
8
[effect adenosine
4
protonation interaction
4
interaction polyuridylic
4
polyuridylic acid]
4
acid] adenosine
4
protonation complex
4
complex formation
4
formation polyu
4
polyu adenosine
4

Similar Publications

Electric Forces and ATP Synthesis.

Rev Physiol Biochem Pharmacol

January 2025

Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK.

ATP synthase is a rotary motor enzyme that drives the formation of ATP from ADP and P and uses multiple electrical forces to do this. This chapter outlines the exquisite use of these electrical forces to generate the high energy phosphates on which all our lives depend. Vacuolar ATPases and the ADP/ATP carrier also are explored.

View Article and Find Full Text PDF

Previous studies showed no improvement in bacterial biomass for Puniceispirillum marinum IMCC1322 under light regimes. Nevertheless, in nutrient-replete cultures with higher inoculating cell densities, strain IMCC1322 exhibited proteorhodopsin photoheterotrophy. Increasing both inoculum size and the amino acid pool can eliminate quorum sensing and starvation responses in strain IMCC1322.

View Article and Find Full Text PDF

A photosynthesis-derived bionic system for sustainable biosynthesis.

Angew Chem Int Ed Engl

January 2025

Renmin Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Institute of Molecular Medicine, School of Microelectronics, Wuhan University, Wuhan, 430072, P. R. China.

"Cell factory" strategy based on microbial anabolism pathways offers an intriguing alternative to relieve the dependence on fossil fuels, which are recognized as the main sources of CO emission. Typically, anabolism of intracellular substance in cell factory requires the consumption of sufficient reduced nicotinamide adenine dinucleotide /nicotinamide adenine dinucleotide phosphate NAD(P)H and adenosine triphosphate ATP. However, it is of great challenge to modify the natural limited anabolism and to increase the insufficient level of NAD(P)H and ATP to optimum concentrations without causing metabolic disorder.

View Article and Find Full Text PDF

Mitochondrial uncouplers inhibit oncogenic E2F1 activity and prostate cancer growth.

Cell Rep Med

January 2025

Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA; Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA. Electronic address:

Mitochondrial uncouplers dissipate proton gradients and deplete ATP production from oxidative phosphorylation (OXPHOS). While the growth of prostate cancer depends on OXPHOS-generated ATP, the oncogenic pathway mediated by the transcription factor E2F1 is crucial for the progression of this deadly disease. Here, we report that mitochondrial uncouplers, including tizoxanide (TIZ), the active metabolite of the Food and Drug Administration (FDA)-approved anthelmintic nitazoxanide (NTZ), inhibit E2F1-mediated expression of genes involved in cell cycle progression, DNA synthesis, and lipid synthesis.

View Article and Find Full Text PDF

Biomimetic photosynthesis, which leverages nanomaterials with light-responsive capabilities, represents an innovative approach for replicating natural photosynthetic processes for green and sustainable energy conversion. In this study, a covalent-organic framework (COF)-based artificial photosynthesis system is realized through the co-assembly of adenosine triphosphate (ATP) synthase and a light-responsive proton generator onto an imine-based COF, RT-COF-1. This system demonstrates an ATP production rate of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!