The turnover of 3-methylhistidine (N tau-methylhistidine) and in some cases actin, myosin heavy chain and aldolase in skeletal muscle was measured in a number of experiments in growing and adult rats in the fed and overnight-starved states. In growing fed rats in three separate experiments, measurements of the methylation rate of protein-bound 3-methylhistidine by either [14C]- or [3H]-methyl-labelled S-adenosylmethionine show that 3-methylhistidine synthesis is slower than the overall rate of protein synthesis indicated by [14C]tyrosine incorporation. Values ranged from 36 to 51%. However, in one experiment with rapidly growing young fed rats, acute measurements over 1 h showed that 3-methylhistidine synthesis could be increased to the same rate as the overall rate. After overnight starvation in these rats, the steady-state synthesis rate of 3-methylhistidine was 38.8% of the overall rate. This was a similar value to that in adult non-growing rats, in which measurements of the relative labelling of 3-methylhistidine and histidine after a single injection of [14C]histidine indicated that 3-methylhistidine synthesis was 37% of the overall rate in the fed or overnight-starved state. According to measurements of actin, myosin heavy-chain and aldolase synthesis in the over-night-starved state with young rats, with a variety of precursors, slow turnover of 3-methylhistidine results from the specific slow turnover of actin, since turnover rates of myosin heavy chain, mixed protein and aldolase were 2.5, 3 and 3.4 times faster respectively. However, in the fed state synthesis rates of actin were increased disproportionately to give similar rates for all proteins. These results show that (a) 3-methylhistidine turnover in muscle is less than half the overall rate in both young and adult rats, (b) slow 3-methylhistidine turnover reflects the specifically slow turnover of actin compared with myosin heavy chain and other muscle proteins, and (c) during growth the synthesis rate of actin is particularly sensitive to the nutritional state and can be increased to a similar rate to that of other proteins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1152286 | PMC |
http://dx.doi.org/10.1042/bj2140593 | DOI Listing |
Int J Mol Sci
January 2025
Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo 113-8657, Tokyo, Japan.
In semelparous species like the ayu (), spawning is followed by rapid physiological decline and death; yet, the underlying molecular mechanisms remain largely unexplored. This study examines transcriptomic changes in ayu skeletal muscle before and after spawning, with a focus on key genes and pathways contributing to muscle atrophy and metabolic dysfunction. Through RNA sequencing and DEG analysis, we identified over 3000 DEGs, and GSEA and KEGG pathway analysis revealed significant downregulation of energy metabolism and protein degradation.
View Article and Find Full Text PDFGenes (Basel)
January 2025
Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto 390-8621, Japan.
belongs to the unconventional myosin superfamily, and the myosin IIIa protein localizes on the tip of the stereocilia of vestibular and cochlear hair cells. Deficiencies in have been reported to cause the deformation of hair cells into abnormally long stereocilia with an increase in spacing. is a rare causative gene of autosomal recessive sensorineural hearing loss (DFNB30), with only 13 cases reported to date.
View Article and Find Full Text PDFMedicine (Baltimore)
January 2025
Department of Respiratory and Critical Care Medicine, Zhongshan City People's Hospital, Zhongshan, Guangdong Province, China.
Rationale: ROS proto-oncogene 1 (ROS1) fusion is a rare but important driver mutation in non-small cell lung cancer, which usually shows significant sensitivity to small molecule tyrosine kinase inhibitors. With the widespread application of next-generation sequencing (NGS), more fusions and co-mutations of ROS1 have been discovered. Non-muscle myosin heavy chain 9 (MYH9) is a rare fusion partner of ROS1 gene as reported.
View Article and Find Full Text PDFActa Pharmacol Sin
January 2025
The Fifth Affiliated Hospital, Guangdong Province & NMPA & State Key Laboratory, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
Vascular smooth muscle cell (VSMC) phenotypic switching plays a crucial role in the initiation and progression of atherosclerosis. Dehydrocorydaline (DHC), a major active component of the traditional Chinese herbal medicine Rhizoma Corydalis, exhibits diverse pharmacological effects. However, its impact on VSMCs remains largely unknown.
View Article and Find Full Text PDFFASEB J
January 2025
Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan.
DFNA1 (deafness, nonsyndromic autosomal dominant 1), initially identified as nonsyndromic sensorineural hearing loss, has been associated with an additional symptom: macrothrombocytopenia. However, the timing of the onset of hearing loss (HL) and thrombocytopenia has not been investigated, leaving it unclear which occurs earlier. Here, we generated a knock-in (KI) DFNA1 mouse model, diaphanous-related formin 1 (DIA1), in which Aequorea coerulescens green fluorescent protein (AcGFP)-tagged human DIA1(p.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!