Age-associated change of characteristics of anti-double-stranded (ds) DNA antibody-forming cells in the NZB/W mouse spleen was studied. These cells in mice aged 9-11 months, which develop high titer anti-ds DNA antibody formation, produced antibody without the help of T cells or pokeweed mitogen (PWM), adhered to Sephadex G-10, and sedimented to the bottom when applied to Ficoll-Paque solution. On the other hand, these cells in relatively young (7- to 8-month-old) mice, which develop low titer anti-ds DNA antibody formation, produced antibody maximally with the help of T cells and PWM, adhered little to Sephadex G-10, and fractionated into intermediate lymphocyte fractions when applied to Ficoll-Paque solution. Collectively, anti-ds DNA antibody-forming cells in NZB/W mice were shown to change their characteristics with age.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000233544DOI Listing

Publication Analysis

Top Keywords

cells nzb/w
12
anti-ds dna
12
nzb/w mice
8
change characteristics
8
dna antibody-forming
8
antibody-forming cells
8
titer anti-ds
8
dna antibody
8
antibody formation
8
formation produced
8

Similar Publications

Purpose: The co-inhibitory receptor B and T Lymphocyte Attenuator (BTLA) negatively regulates B and T cell activation. We have previously shown an altered BTLA expression by regulatory T cells and an impaired capacity of BTLA to inhibit CD4 T cell activation in lupus patients. In this study, we analyzed BTLA expression and function in the NZB/W lupus-mouse model and examined the therapeutic potential of BTLA targeting.

View Article and Find Full Text PDF
Article Synopsis
  • Mitochondrial dysfunction and macrophage dysregulation are important in autoimmune diseases, but how they connect is not fully understood.
  • The study focuses on the role of chronic low-level interferon-gamma (IFN-γ) using a mouse model with lupus-like symptoms, finding that this condition suppresses mitochondrial function, especially in the kidneys.
  • It suggests that restoring mitochondrial function could improve macrophage activity and provide new targets for treating autoimmune diseases like lupus nephritis.
View Article and Find Full Text PDF

Therapeutic effects of extracellular vesicles derived from mesenchymal stem cells primed with disease-conditioned-immune cells in systemic lupus erythematosus.

Arthritis Res Ther

November 2024

GenNBio Inc, 80, Deurimsandan 2-ro, Cheongbuk-eup, Pyeongtaek-si, Gyeonggi-do, 17796, Republic of Korea.

Article Synopsis
  • Systemic lupus erythematosus (SLE) is a chronic, incurable autoimmune disease, prompting the need for effective treatments, such as using extracellular vesicles (EV) from mesenchymal stem cells (iMSCs) primed with immune cell media.
  • In the study, female NZB/W F1 mice were divided into three groups to assess the effects of CM-EV and ASC-EV treatments compared to a control group, with assessment done over 36 weeks.
  • Results showed that CM-EV treatment enhanced survival rates, reduced harmful antibodies, and improved kidney health, while both EV types decreased pro-inflammatory macrophages, indicating their potential in modulating SLE’s immune response.
View Article and Find Full Text PDF
Article Synopsis
  • Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that can affect multiple organs, with kidney issues (lupus nephritis) being a serious complication and a leading cause of death in affected patients.
  • Current mouse models used to study SLE/LN show diverse immune responses that may not fully reflect human disease, highlighting the need for better models that parallel human pathways for developing new treatments.
  • The research compared the immune responses of five different mouse models of SLE/LN to human data, finding differences in cell types and responses, which could help in understanding the disease and improving therapy translation for patients.
View Article and Find Full Text PDF
Article Synopsis
  • CD44 is a glycoprotein linked to kidney inflammation and fibrosis, specifically studied in a mouse model for lupus nephritis (LN) and in human patients with active LN.
  • The research showed that CD44 was absent in healthy kidneys but expressed in kidney cells of LN patients, and treatment with anti-CD44 antibodies improved kidney health in mice by reducing immune cell infiltration and fibrosis markers.
  • Serum CD44 levels increased before clinical symptoms of renal flare in patients, effectively distinguishing those with active LN from healthy individuals and other kidney-related conditions.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!